Skip to main content
Log in

Antisense peptide nucleic acids as a potential anti-infective agent

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antibiotics have long been used for anti-infective control of bacterial infections, growth promotion in husbandry, and prophylactic protection against plant pathogens. However, their inappropriate use results in the emergence and spread of multiple drug resistance (MDR) especially among various bacterial populations, which limits further administration of conventional antibiotics. Therefore, the demand for novel anti-infective approaches against MDR diseases becomes increasing in recent years. The peptide nucleic acid (PNA)-based technology has been proposed as one of novel anti-infective and/or therapeutic strategies. By definition, PNA is an artificially synthesized nucleic acid mimic structurally similar to DNA or RNA in nature and linked one another via an unnatural pseudo-peptide backbone, rendering to its stability in diverse host conditions. It can bind DNA or RNA strands complimentarily with high affinity and sequence specificity, which induces the target-specific gene silencing by inhibiting transcription and/or translation. Based on these unique properties, PNA has been widely applied for molecular diagnosis as well as considered as a potential anti-infective agent. In this review, we discuss the general features of PNAs and their application to various bacterial pathogens as new anti-infective or antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldridge, S. 1999. The discovery and development of penicillin 1928–1945: The alexander fleming laboratory museum, London, UK, November 19, 1999: an international historic chemical landmark, American Chemical Society.

    Google Scholar 

  • Almarsson, O. and Bruice, T.C. 1993. Peptide nucleic acid (PNA) conformation and polymorphism in PNA-DNA and PNA-RNA hybrids. Proc. Natl. Acad. Sci. USA 90, 9542–9546.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, C., Azevedo, N.F., Santos, S., Keevil, C.W., and Vieira, M.J. 2011. Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6, e14786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atterbury, R.J., Van Bergen, M.A., Ortiz, F., Lovell, M.A., Harris, J.A., De Boer, A., Wagenaar, J.A., Allen, V.M., and Barrow, P.A. 2007. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl. Environ. Microbiol. 73, 4543–4549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, H., You, Y., Yan, H., Meng, J., Xue, X., Hou, Z., Zhou, Y., Ma, X., Sang, G., and Luo, X. 2012. Antisense inhibition of gene expression and growth in Gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials 33, 659–667.

    Article  CAS  PubMed  Google Scholar 

  • Bentin, T., Larsen, H.J., and Nielsen, P.E. 2003. Combined triplex/duplex invasion of double-stranded DNA by “tail-clamp” peptide nucleic acid. Biochemistry 42, 13987–13995.

    Article  CAS  PubMed  Google Scholar 

  • Brown, S.C., Thomson, S.A., Veal, J.M., and Davis, D.G. 1994. NMR solution structure of a peptide nucleic acid complexed with RNA. Science 265, 777–780.

    Article  CAS  PubMed  Google Scholar 

  • Carter, C.D., Parks, A., Abuladze, T., Li, M., Woolston, J., Magnone, J., Senecal, A., Kropinski, A.M., and Sulakvelidze, A. 2012. Bacteriophage cocktail significantly reduces Escherichia coli O157: H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage 2, 178–185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Castillo, J.I., Rownicki, M., Wojciechowska, M., and Trylska, J. 2018. Antimicrobial synergy between mRNA targeted peptide nucleic acid and antibiotics in E. coli. Bioorg. Med. Chem. Lett. 28, 3094–3098.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti, A., Zhang, K., Aruva, M.R., Cardi, C.A., Opitz, A.W., Wagner, N.J., Thakur, M.L., and Wickstrom, E. 2007. Radiohybridization PET imaging of KRAS G12D mRNA expression in human pancreas cancer xenografts with [64Cu]DO3A-peptide nucleic acid-peptide nanoparticles. Cancer Biol. Ther. 6, 948–956.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Liu, M., Yu, L., Cai, G., Chen, Q., Wu, R., Wang, F., Zhang, B., Jiang, T., and Fu, W. 2005. Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system. J. Nanosci. Nanotechnol. 5, 1266–1272.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J.J., Kim, C., and Park, H. 2009. Peptide nucleic acid-based array for detecting and genotyping human papillomaviruses. J. Clin. Microbiol. 47, 1785–1790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clatworthy, A.E., Pierson, E., and Hung, D.T. 2007. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3, 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Connerton, P.L., Timms, A.R., and Connerton, I.F. 2011. Campylobacter bacteriophages and bacteriophage therapy. J. Appl. Microbiol. 111, 255–265.

    Article  CAS  PubMed  Google Scholar 

  • Dean, D.A. 2000. Peptide nucleic acids: versatile tools for gene therapy strategies. Adv. Drug Deliv. Rev. 44, 81–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidov, V., Frank-Kamenetskii, M.D., Egholm, M., Buchardt, O., and Nielsen, P.E. 1993. Sequence selective double strand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1. Nucleic Acids Res. 21, 2103–2107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidov, V.V., Potaman, V.N., Frank-Kamenetskii, M.D., Egholm, M., Buchard, O., Sonnichsen, S.H., and Nielsen, P.E. 1994. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48, 1310–1313.

    Article  CAS  PubMed  Google Scholar 

  • Dryselius, R., Aswasti, S.K., Rajarao, G.K., Nielsen, P.E., and Good, L. 2003. The translation start codon region is sensitive to antisense PNA inhibition in Escherichia coli. Oligonucleotides 13, 427–433.

    Article  CAS  PubMed  Google Scholar 

  • Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., Nuovo, G.J., et al. 2012. Micro-RNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. USA 109, E2110–2116.

    Article  PubMed  Google Scholar 

  • Faccini, A., Tortori, A., Tedeschi, T., Sforza, S., Tonelli, R., Pession, A., Corradini, R., and Marchelli, R. 2008. Circular dichroism study of DNA binding by a potential anticancer peptide nucleic acid targeted against the MYCN oncogene. Chirality 20, 494–500.

    Article  CAS  PubMed  Google Scholar 

  • Fauci, A.S., Touchette, N.A., and Folkers, G.K. 2005. Emerging infectious diseases: a 10-year perspective from the National Institute of Allergy and Infectious Diseases. Emerg. Infect. Dis. 11, 519–525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming, A. 1929. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10, 226–236.

    CAS  PubMed Central  Google Scholar 

  • Forrest, G.N., Roghmann, M.C., Toombs, L.S., Johnson, J.K., Weekes, E., Lincalis, D.P., and Venezia, R.A. 2008. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Anti-microb. Agents Chemother. 52, 3558–3563.

    Article  CAS  Google Scholar 

  • Gaylord, B.S., Massie, M.R., Feinstein, S.C., and Bazan, G.C. 2005. SNP detection using peptide nucleic acid probes and conjugated polymers: applications in neurodegenerative disease identification. Proc. Natl. Acad. Sci. USA 102, 34–39.

    Article  CAS  PubMed  Google Scholar 

  • Germini, A., Rossi, S., Zanetti, A., Corradini, R., Fogher, C., and Marchelli, R. 2005. Development of a peptide nucleic acid array platform for the detection of genetically modified organisms in food. J. Agric. Food Chem. 53, 3958–3962.

    Article  CAS  PubMed  Google Scholar 

  • Ghidini, A., Bergquist, H., Murtola, M., Punga, T., Zain, R., and Stromberg, R. 2016. Clamping of RNA with PNA enables targeting of microRNA. Org. Biomol. Chem. 14, 5210–5213.

    Article  CAS  PubMed  Google Scholar 

  • Gill, E.E., Franco, O.L., and Hancock, R.E. 2015. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem. Biol. Drug Des. 85, 56–78.

    Article  CAS  PubMed  Google Scholar 

  • Goh, S., Loeffler, A., Lloyd, D.H., Nair, S.P., and Good, L. 2015. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro. BMC Microbiol. 15, 262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good, L., Awasthi, S.K., Dryselius, R., Larsson, O., and Nielsen, P.E. 2001. Bactericidal antisense effects of peptide-PNA conjugates. Nat. Biotechnol. 19, 360–364.

    Article  CAS  PubMed  Google Scholar 

  • Hanvey, J.C., Peffer, N.J., Bisi, J.E., Thomson, S.A., Cadilla, R., Josey, J.A., Ricca, D.J., Hassman, C.F., Bonham, M.A., Au, K.G., et al. 1992. Antisense and antigene properties of peptide nucleic acids. Science 258, 1481–1485.

    Article  CAS  PubMed  Google Scholar 

  • Hatamoto, M., Nakai, K., Ohashi, A., and Imachi, H. 2009. Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA. Appl. Microbiol. Biotechnol. 84, 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  • Heckl, S., Pipkorn, R., Waldeck, W., Spring, H., Jenne, J., von der Lieth, C.W., Corban-Wilhelm, H., Debus, J., and Braun, K. 2003. Intracellular visualization of prostate cancer using magnetic resonance imaging. Cancer Res. 63, 4766–4772.

    CAS  PubMed  Google Scholar 

  • Hungaro, H.M., Mendonca, R.C.S., Gouvea, D.M., Vanetti, M.C.D., and Pinto, C.L.D.O. 2013. Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Res. Int. 52, 75–81.

    Article  CAS  Google Scholar 

  • Jaktaji, R.P. and Mohiti, E. 2010. Study of mutations in the DNA gyrase gyrA gene of Escherichia coli. Iran. J. Pharm. Res. 9, 43–48.

    CAS  Google Scholar 

  • Jeon, B. and Zhang, Q. 2009. Sensitization of Campylobacter jejuni to fluoroquinolone and macrolide antibiotics by antisense inhibition of the CmeABC multidrug efflux transporter. J. Antimicrob. Chemother. 63, 946–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnning, A., Kristiansson, E., Fick, J., Weijdegard, B., and Larsson D.G. 2015. Resistance mutations in gyrA and parC are common in Escherichia communities of both fluoroquinolone-polluted and uncontaminated aquatic environments. Front. Microbiol. 6, 1355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaihatsu, K., Sawada, S., Nakamura, S., Nakaya, T., Yasunaga, T., and Kato, N. 2013. Sequence-specific and visual identification of the influenza virus NS gene by azobenzene-tethered bis-peptide nucleic acid. PLoS One 8, e64017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kariko, K., Bhuyan, P., Capodici, J., and Weissman, D. 2004. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through Tolllike receptor 3. J. Immunol. 172, 6545–6549.

    Article  CAS  PubMed  Google Scholar 

  • Keen, E.C. 2012. Phage therapy: concept to cure. Front. Microbiol. 3, 238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, W., Zhu, W., Hendricks, G.L., Van Tyne, D., Steele, A.D., Keohane, C.E., Fricke, N., Conery, A.L., Shen, S., Pan, W., et al. 2018. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556, 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauert, M.P. and Glazer, P.M. 2001. Triplex forming oligonucleotides: sequence-specific tools for gene targeting. Hum. Mol. Genet. 10, 2243–2251.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen, H. and Nielsen, P.E. 1996. Antisense properties of duplex-and triplex-forming PNAs. Nucleic Acids Res. 24, 494–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolevzon, N., Nasereddin, A., Naik, S., Yavin, E., and Dzikowski, R. 2014. Use of peptide nucleic acids to manipulate gene expression in the malaria parasite Plasmodium falciparum. PLoS One 9, e86802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaganov, Y.N., Stetsenko, D.A., Lubyako, E.N., Kvitko, N.P., Lazurkin, Y.S., and Nielsen, P.E. 2000. Effect of temperature and ionic strength on the dissociation kinetics and lifetime of PNA-DNA triplexes. Biochemistry 39, 11742–11747.

    Article  CAS  PubMed  Google Scholar 

  • Kulyte, A., Nekhotiaeva, N., Awasthi, S.K., and Good, L. 2005. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J. Mol. Microbiol. Biotechnol. 9, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Zengeya, T., and Rozners, E. 2010. Short peptide nucleic acids bind strongly to homopurine tract of double helical RNA at pH 5.5. J. Am. Chem. Soc. 132, 8676–8681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillehoj, H.S. and Lee, K.W. 2012. Immune modulation of innate immunity as alternatives-to-antibiotics strategies to mitigate the use of drugs in poultry production. Poult. Sci. 91, 1286–1291.

    Article  CAS  PubMed  Google Scholar 

  • Loc Carrillo, C., Atterbury, R.J., el-Shibiny, A., Connerton, P.L., Dillon, E., Scott, A., and Connerton, I.F. 2005. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 71, 6554–6563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse, J., Dahl, O., and Nielsen, P.E. 1999. Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. Proc. Natl. Acad. Sci. USA 96, 11804–11808.

    Article  CAS  PubMed  Google Scholar 

  • Lundin, K.E., Good, L., Stromberg, R., Graslund, A., and Smith, C.I. 2006. Biological activity and biotechnological aspects of peptide nucleic acid. Adv. Genet. 56, 1–51.

    Article  CAS  PubMed  Google Scholar 

  • Malcher, J., Wesoly, J., and Bluyssen, H.A. 2014. Molecular properties and medical applications of peptide nucleic acids. Mini Rev. Med. Chem. 14, 401–410.

    Article  CAS  PubMed  Google Scholar 

  • Marciniak, R.A., Cavazos, D., Montellano, R., Chen, Q., Guarente, L., and Johnson, F.B. 2005. A novel telomere structure in a human alternative lengthening of telomeres cell line. Cancer Res. 65, 2730–2737.

    Article  CAS  PubMed  Google Scholar 

  • Mondhe, M., Chessher, A., Goh, S., Good, L., and Stach, J.E. 2014. Species-selective killing of bacteria by antimicrobial peptide-PNAs. PLoS One 9, e89082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu, Y., Shen, Z., Jeon, B., Dai, L., and Zhang, Q. 2013. Synergistic effects of anti-CmeA and anti-CmeB peptide nucleic acids on sensitizing Campylobacter jejuni to antibiotics. Antimicrob. Agents Chemother. 57, 4575–4577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai, Y., Miyazawa, H., Huqun, Tanaka, T., Udagawa, K., Kato, M., Fukuyama, S., Yokote, A., Kobayashi, K., Kanazawa, M., et al. 2005. Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res. 65, 7276–7282.

    Article  CAS  PubMed  Google Scholar 

  • Nekhotiaeva, N., Awasthi, S.K., Nielsen, P.E., and Good, L. 2004. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol. Ther. 10, 652–659.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, P.E. 2010. Gene targeting and expression modulation by peptide nucleic acids (PNA). Curr. Pharm. Des. 16, 3118–3123.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, P. and Christensen, L. 1996. Strand displacement binding of a duplex-forming homopurine PNA to a homopyrimidine duplex DNA target. J. Am. Chem. Soc. 118, 2287–2288.

    Article  CAS  Google Scholar 

  • Nielsen, P.E. and Egholm, M. 1999. An introduction to peptide nucleic acid. Curr. Issues Mol. Biol. 1, 89–104.

    CAS  PubMed  Google Scholar 

  • Nielsen, P.E., Egholm, M., Berg, R.H., and Buchardt, O. 1991. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, P.E., Egholm, M., and Buchardt, O. 1994a. Evidence for (PNA)2/DNA triplex structure upon binding of PNA to dsDNA by strand displacement. J. Mol. Recognit. 7, 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, P.E., Egholm, M., and Buchardt, O. 1994b. Sequence-specific transcription arrest by peptide nucleic acid bound to the DNA template strand. Gene 149, 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Oh, E., Zhang, Q., and Jeon, B. 2014. Target optimization for peptide nucleic acid (PNA)-mediated antisense inhibition of the CmeABC multidrug efflux pump in Campylobacter jejuni. J. Antimicrob. Chemother. 69, 375–380.

    Article  CAS  PubMed  Google Scholar 

  • Patenge, N., Pappesch, R., Krawack, F., Walda, C., Mraheil, M.A., Jacob, A., Hain, T., and Kreikemeyer, B. 2013. Inhibition of growth and gene expression by PNA-peptide conjugates in Streptococcus pyogenes. Mol. Ther. Nucleic Acids 2, e132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirisi, A. 2000. Phage therapy-advantages over antibiotics? Lancet 356, 1418.

    Article  CAS  PubMed  Google Scholar 

  • Rajarao, G.K., Nekhotiaeva, N., and Good, L. 2002. Peptide-mediated delivery of green fluorescent protein into yeasts and bacteria. FEMS Microbiol. Lett. 215, 267–272.

    Article  CAS  PubMed  Google Scholar 

  • Riguet, E., Tripathi, S., Chaubey, B., Desire, J., Pandey, V.N., and Decout, J.L. 2004. A peptide nucleic acid-neamine conjugate that targets and cleaves HIV-1 TAR RNA inhibits viral replication. J. Med. Chem. 47, 4806–4809.

    Article  CAS  PubMed  Google Scholar 

  • Rockenbauer, E., Petersen, K., Vogel, U., Bolund, L., Kolvraa, S., Nielsen, K.V., and Nexo, B.A. 2005. SNP genotyping using microsphere-linked PNA and flow cytometric detection. Cytometry A 64, 80–86.

    Article  CAS  PubMed  Google Scholar 

  • Rozema, E.A., Stephens, T.P., Bach, S.J., Okine, E.K., Johnson, R.P., Stanford, K., and McAllister, T.A. 2009. Oral and rectal administration of bacteriophages for control of Escherichia coli O157:H7 in feedlot cattle. J. Food Prot. 72, 241–250.

    Article  PubMed  Google Scholar 

  • Schleifman, E.B., Bindra, R., Leif, J., del Campo, J., Rogers, F.A., Uchil, P., Kutsch, O., Shultz, L.D., Kumar, P., Greiner, D.L., et al. 2011. Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chem. Biol. 18, 1189–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sioud, M. and Sorensen, D.R. 2003. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem. Biophys. Res. Commun. 312, 1220–1225.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K.F., Goldberg, M., Rosenthal, S., Carlson, L., Chen, J., Chen, C., and Ramachandran, S. 2014. Global rise in human infectious disease outbreaks. J. R. Soc. Interface 11, 20140950.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas, S.M., Sahu, B., Rapireddy, S., Bahal, R., Wheeler, S.E., Procopio, E.M., Kim, J., Joyce, S.C., Contrucci, S., Wang, Y., et al. 2013. Antitumor effects of EGFR antisense guanidine-based peptide nucleic acids in cancer models. ACS Chem. Biol. 8, 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Tian, X., Aruva, M.R., Qin, W., Zhu, W., Duffy, K.T., Sauter, E.R., Thakur, M.L., and Wickstrom, E. 2004. External imaging of CCND1 cancer gene activity in experimental human breast cancer xenografts with 99mTc-peptide-peptide nucleic acid-peptide chimeras. J. Nucl. Med. 45, 2070–2082.

    CAS  PubMed  Google Scholar 

  • Tian, X., Aruva, M.R., Qin, W., Zhu, W., Sauter, E.R., Thakur, M.L., and Wickstrom, E. 2005. Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [99mTc]peptide-peptide nucleic acid-peptide chimera. Bioconjug. Chem. 16, 70–79.

    Article  CAS  PubMed  Google Scholar 

  • Tian, X., Chakrabarti, A., Amirkhanov, N., Aruva, M.R., Zhang, K., Cardi, C.A., Lai, S., Thakur, M.L., and Wickstrom, E. 2007. Receptor-mediated internalization of chelator-PNA-peptide hybridization probes for radioimaging or magnetic resonance imaging of oncogene mRNAs in tumours. Biochem. Soc. Trans. 35, 72–76.

    Article  PubMed  Google Scholar 

  • Totsika, M. 2016. Benefits and challenges of antivirulence antimicrobials at the dawn of the post-antibiotic era. Drug Deliv. Lett. 6, 30–37.

    Article  Google Scholar 

  • Vaara, M. and Porro, M. 1996. Group of peptides that act synergistically with hydrophobic antibiotics against Gram-negative enteric bacteria. Antimicrob. Agents Chemother. 40, 1801–1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts, J.K. and Corey, D.R. 2012. Gene silencing by siRNAs and antisense oligonucleotides in the laboratory and the clinic. J. Pathol. 226, 365–379.

    Article  CAS  PubMed  Google Scholar 

  • Wilks, S.A. and Keevil, C.W. 2006. Targeting species-specific low-affinity 16S rRNA binding sites by using peptide nucleic acids for detection of Legionellae in biofilms. Appl. Environ. Microbiol. 72, 5453–5462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittung, P., Nielsen, P., and Norden, B. 1997. Extended DNA-recognition repertoire of peptide nucleic acid (PNA): PNA-dsDNA triplex formed with cytosine-rich homopyrimidine PNA. Biochemistry 36, 7973–7979.

    Article  CAS  PubMed  Google Scholar 

  • Xue-Wen, H., Jie, P., Xian-Yuan, A., and Hong-Xiang, Z. 2007. Inhibition of bacterial translation and growth by peptide nucleic acids targeted to domain II of 23S rRNA. J. Pept. Sci. 13, 220–226.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Chang, C.C., Chuang, T.L., and Lin, C.W. 2016. Detection of KRAS mutations of colorectal cancer with peptide-nucleic-acid-mediated real-time PCR clamping. Biotechnol. Biotechnol. Equip. 30, 1155–1162.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang Won Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.T., Kim, S.K. & Yoon, J.W. Antisense peptide nucleic acids as a potential anti-infective agent. J Microbiol. 57, 423–430 (2019). https://doi.org/10.1007/s12275-019-8635-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8635-4

Keywords

Navigation