Skip to main content
Log in

Antibiofilm agents: A new perspective for antimicrobial strategy

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Biofilms are complex microbial architectures that attach to surfaces and encase microorganisms in a matrix composed of self-produced hydrated extracellular polymeric substances (EPSs). In biofilms, microorganisms become much more resistant to antimicrobial treatments, harsh environmental conditions, and host immunity. Biofilm formation by microbial pathogens greatly enhances survival in hosts and causes chronic infections that result in persistent inflammation and tissue damages. Currently, it is believed over 80% of chronic infectious diseases are mediated by biofilms, and it is known that conventional antibiotic medications are inadequate at eradicating these biofilm-mediated infections. This situation demands new strategies for biofilm-associated infections, and currently, researchers focus on the development of antibiofilm agents that are specific to biofilms, but are nontoxic, because it is believed that this prevents the development of drug resistance. Here, we review the most promising antibiofilm agents undergoing intensive research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Mawgoud, A.M., Lepine, F., and Deziel, E. 2010. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86, 1323–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aka, S.T.H. 2015. Killing efficacy and anti-biofilm activity of synthetic human cationic antimicrobial peptide cathelicidin hCAP-18/LL37 against urinary tract pathogens. J. Microbiol. Infect. Dis. 5, 15–20.

    Article  Google Scholar 

  • Al-Adham, I.S.I., Dinning, A.J., Eastwood, I.M., Austin, P., and Collier, P.J. 1998. Cell membrane effects of some common biocides. J. Ind. Microbiol. Biotechnol. 21, 6–10.

    Article  CAS  Google Scholar 

  • Alkawash, M.A., Soothill, J.S., and Schiller, N.L. 2006. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114, 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Allesen-Holm, M., Barken, K.B., Yang, L., Klausen, M., Webb, J.S., Kjelleberg, S., Molin, S., Givskov, M., and Tolker-Nielsen, T. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59, 1114–1128.

    Article  CAS  PubMed  Google Scholar 

  • Altieri, C., Cardillo, D., Bevilacqua, A., and Sinigaglia, M. 2007. Inhibition of Aspergillus spp. and Penicillium spp. by fatty acids and their monoglycerides. J. Food Prot. 70, 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  • Ash, M. and Ash, I. 1993. Handbook of industrial surfactants: An international guide to more than 16,000 products by tradename, application, composition & manufacturer. Gower Pub Co.

    Google Scholar 

  • Balaban, N., Stoodley, P., Fux, C.A., Wilson, S., Costerton, J.W., and Dell’Acqua, G. 2005. Prevention of staphylococcal biofilm associated infections by the quorum sensing inhibitor rip. Clin. Orthop. Relat. Res. 437, 48–54.

    Article  Google Scholar 

  • Banin, E., Brady, K.M., and Greenberg, E.P. 2006. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl. Environ. Microbiol. 72, 2064–2069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banin, E., Vasil, M.L., and Greenberg, E.P. 2005. Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 102, 11076–11081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal, T., Englert, D., Lee, J., Hegde, M., Wood, T.K., and Jayaraman, A. 2007. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli o157:H7 chemotaxis, colonization, and gene expression. Infect. Immun. 75, 4597–4607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraud, N., Hassett, D.J., Hwang, S.H., Rice, S.A., Kjelleberg, S., and Webb, J.S. 2006. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 188, 7344–7353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraud, N., Schleheck, D., Klebensberger, J., Webb, J.S., Hassett, D.J., Rice, S.A., and Kjelleberg, S. 2009. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol. 191, 7333–7342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergsson, G., Arnfinnsson, J., Karlsson, S.M., Steingrimsson, O., and Thormar, H. 1998. In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 42, 2290–2294.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernier, S.P., Ha, D.G., Khan, W., Merritt, J.H., and O’Toole, G.A. 2011. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res. Microbiol. 162, 680–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj, A.K., Vinothkumar, K., and Rajpara, N. 2013. Bacterial quorum sensing inhibitors: Attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat. Antiinfect. Drug Discov. 8, 68–83.

    Article  CAS  PubMed  Google Scholar 

  • Boles, B.R. and Horswill, A.R. 2008. agr-Mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4, e1000052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boles, B.R., Thoendel, M., and Singh, P.K. 2005. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol. Microbiol. 57, 1210–1223.

    Article  CAS  PubMed  Google Scholar 

  • Brackman, G., Celen, S., Baruah, K., Bossier, P., Van Calenbergh, S., Nelis, H.J., and Coenye, T. 2009. AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with luxpq. Microbiology 155, 4114–4122.

    Article  CAS  PubMed  Google Scholar 

  • Brackman, G. and Coenye, T. 2015. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 21, 5–11.

    Article  CAS  PubMed  Google Scholar 

  • Brackman, G., Cos, P., Maes, L., Nelis, H.J., and Coenye, T. 2011. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob. Agents Chemother. 55, 2655–2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandenburg, K.S., Calderon, D.F., Kierski, P.R., Brown, A.L., Shah, N.M., Abbott, N.L., Schurr, M.J., Murphy, C.J., McAnulty, J.F., and Czuprynski, C.J. 2015. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings. Wound Repair Regen. 23, 842–854.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandenburg, K.S., Rodriguez, K.J., McAnulty, J.F., Murphy, C.J., Abbott, N.L., Schurr, M.J., and Czuprynski, C.J. 2013. Tryptophan inhibits biofilm formation by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 1921–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brogden, K.A., DeLucca, A.J., Bland, J., and Elliott, S. 1996. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc. Natl. Acad. Sci. USA 93, 412–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brotz, H., Bierbaum, G., Leopold, K., Reynolds, P.E., and Sahl, H.G. 1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42, 154–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casalinuovo, I.A., Sorge, R., Bonelli, G., and Di Francesco, P. 2017. Evaluation of the antifungal effect of edta, a metal chelator agent, on Candida albicans biofilm. Eur. Rev. Med. Pharmacol. Sci. 21, 1413–1420.

    CAS  PubMed  Google Scholar 

  • Chaignon, P., Sadovskaya, I., Ragunah, C., Ramasubbu, N., Kaplan, J.B., and Jabbouri, S. 2007. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl. Microbiol. Biotechnol. 75, 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Chebbi, A., Elshikh, M., Haque, F., Ahmed, S., Dobbin, S., Marchant, R., Sayadi, S., Chamkha, M., and Banat, I.M. 2017. Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection. J. Basic Microbiol. 57, 364–375.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X. and Stewart, P.S. 2000. Biofilm removal caused by chemical treatments. Water Res. 34, 4229–4233.

    Article  CAS  Google Scholar 

  • Cheng, L.J., Yan, X., Wu, M.X., Li, W.K., and Deng, L. 2017. Development of an aptamer-ampicillin conjugate for treating biofilms. Biochem. Biophy. Res. Commun. 483, 847–854.

    Article  CAS  Google Scholar 

  • Choi, Y., Park, H.Y., Park, S.J., Park, S.J., Kim, S.K., Ha, C., Im, S.J., and Lee, J.H. 2011. Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa. Mol. Cells 32, 57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen, L.D., van Gennip, M., Jakobsen, T.H., Alhede, M., Hougen, H.P., Hoiby, N., Bjarnsholt, T., and Givskov, M. 2012. Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J. Antimicrob. Chemother. 67, 1198–1206.

    Article  CAS  PubMed  Google Scholar 

  • Cirioni, O., Mocchegiani, F., Cacciatore, I., Vecchiet, J., Silvestri, C., Baldassarre, L., Ucciferri, C., Orsetti, E., Castelli, P., Provinciali, M., et al. 2013. Quorum sensing inhibitor FS3-coated vascular graft enhances daptomycin efficacy in a rat model of staphylococcal infection. Peptides 40, 77–81.

    Article  CAS  PubMed  Google Scholar 

  • Costaglioli, P., Barthe, C., Claverol, S., Brozel, V.S., Perrot, M., Crouzet, M., Bonneu, M., Garbay, B., and Vilain, S. 2012. Evidence for the involvement of the anthranilate degradation pathway in Pseudomonas aeruginosa biofilm formation. Microbiologyopen 1, 326–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton, J.W., Stewart, P.S., and Greenberg, E.P. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284, 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  • Craigen, B., Dashiff, A., and Kadouri, D.E. 2011. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol. J. 5, 21–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Darouiche, R.O., Mansouri, M.D., Gawande, P.V., and Madhyastha, S. 2009. Antimicrobial and antibiofilm efficacy of triclosan and dispersinB combination. J. Antimicrob. Chemother. 64, 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Davies, D.G. and Marques, C.N. 2009. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 191, 1393–1403.

    Article  CAS  PubMed  Google Scholar 

  • De Brucker, K., Delattin, N., Robijns, S., Steenackers, H., Verstraeten, N., Landuyt, B., Luyten, W., Schoofs, L., Dovgan, B., Frohlich, M., et al. 2014. Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation. Antimicrob. Agents Chemother. 58, 5395–5404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Fuente-Nunez, C., Reffuveille, F., Haney, E.F., Straus, S.K., and Hancock, R.E.W. 2014. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 10, e1004152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Fuente-Nunez, C., Reffuveille, F., Mansour, S.C., Reckseidler-Zenteno, S.L., Hernandez, D., Brackman, G., Coenye, T., and Hancock, R.E.W. 2015. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections Chem. Biol. 22, 1280–1282.

    Google Scholar 

  • de Oliveira, H.L.D.D., Fleming, M.E.C.K., Silva, P.V., de Paula, G.R., Futuro, D.O., Velarde, G.C., Esper, L.M.R., and Teixeira, L.A. 2014. Influence of papain in biofilm formed by methicillin-resistant Staphylococcus epidermidis and methicillin-resistant Staphylococcus haemolyticus isolates. Braz. J. Pharm. Sci. 50, 261–267.

    Article  Google Scholar 

  • Defoirdt, T., Miyamoto, C.M., Wood, T.K., Meighen, E.A., Sorgeloos, P., Verstraete, W., and Bossier, P. 2007. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ. Microbiol. 9, 2486–2495.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y., Lim, A., Lee, J., Chen, S., An, S., Dong, Y.H., and Zhang, L.H. 2014. Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens. BMC Microbiol. 14, 51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desbois, A.P. and Smith, V.J. 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85, 1629–1642.

    Article  CAS  PubMed  Google Scholar 

  • Di Martino, P., Fursy, R., Bret, L., Sundararaju, B., and Phillips, R.S. 2003. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can. J. Microbiol. 49, 443–449.

    Article  PubMed  Google Scholar 

  • Dohme, F., Machmuller, A., Wasserfallen, A., and Kreuzer, M. 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32, 47–51.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y.H., Gusti, A.R., Zhang, Q., Xu, J.L., and Zhang, L.H. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68, 1754–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, Y.H., Zhang, X.F., An, S.W., Xu, J.L., and Zhang, L.H. 2008. A novel two-component system BqsS-BqsR modulates quorum sensing-dependent biofilm decay in Pseudomonas aeruginosa. Commun. Integr. Biol. 1, 88–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan, R.M. and Costerton, J.W. 2002. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Reis Ponce, A., Martins, M.L., de Araujo, E.F., Mantovani, H.C., and Vanetti, M.C. 2012. Aiia quorum-sensing quenching controls proteolytic activity and biofilm formation by Enterobacter cloacae. Curr. Microbiol. 65, 758–763.

    Article  CAS  PubMed  Google Scholar 

  • Dow, J.M., Crossman, L., Findlay, K., He, Y.Q., Feng, J.X., and Tang, J.L. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100, 10995–11000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durr, U.H.N., Sudheendra, U.S., and Ramamoorthy, A. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta. 1758, 1408–1425.

    Article  PubMed  CAS  Google Scholar 

  • Eberhard, A., Burlingame, A., Eberhard, C., Kenyon, G., Nealson, K., and Oppenheimer, N. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444–2449.

    Article  CAS  PubMed  Google Scholar 

  • Eckhart, L., Fischer, H., Barken, K.B., Tolker-Nielsen, T., and Tschachler, E. 2007. DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. Br. J. Dermatol. 156, 1342–1345.

    Article  CAS  PubMed  Google Scholar 

  • Favre-Bonté, S., Köhler, T., and Van Delden, C. 2003. Biofilm formation by Pseudomonas aeruginosa: Role of the C4-HSL cellto-cell signal and inhibition by azithromycin. J. Antimicrob. Chemother. 52, 598–604.

    Article  PubMed  CAS  Google Scholar 

  • Feldlaufer, M.F., Knox, D.A., Lusby, W.R., and Shimanuki, H. 1993. Antimicrobial activity of fatty-acids against Bacillus larvae, the causative agent of american foulbrood disease. Apidologie 24, 95–99.

    Article  CAS  Google Scholar 

  • Flemming, H.C. and Wingender, J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633.

    CAS  PubMed  Google Scholar 

  • Fux, C., Costerton, J., Stewart, P., and Stoodley, P. 2005. Survival strategies of infectious biofilms. Trends Microbiol. 13, 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Gadd, G.M. 2010. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiol-Sgm. 156, 609–643.

    Article  CAS  Google Scholar 

  • Galloway, W.R., Hodgkinson, J.T., Bowden, S.D., Welch, M., and Spring, D.R. 2011. Quorum sensing in Gram-negative bacteria: Small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem. Rev. 111, 28–67.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J.Y., Tao, J.L., Liang, W.L., and Jiang, Z.F. 2016. Cyclic (di)nucleotides: The common language shared by microbe and host. Curr. Opin. Microbiol. 30, 79–87.

    Article  CAS  PubMed  Google Scholar 

  • George, E.A., Novick, R.P., and Muir, T.W. 2008. Cyclic peptide inhibitors of staphylococcal virulence prepared by Fmoc-based thiolactone peptide synthesis. J. Am. Chem. Soc. 130, 4914–4924.

    Article  CAS  PubMed  Google Scholar 

  • Gil, M.L., Casanova, M., and Martinez, J.P. 1994. Changes in the cell-wall glycoprotein composition of Candida albicans associated to the inhibition of germ tube formation by EDTA. Arch. Microbiol. 161, 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Gilan, I. and Sivan, A. 2013. Effect of proteases on biofilm formation of the plastic-degrading Actinomycete rhodococcus ruber C208. FEMS Microbiol. Lett. 342, 18–23.

    Article  CAS  PubMed  Google Scholar 

  • Glover, R.E., Smith, R.R., Jones, M.V., Jackson, S.K., and Rowlands, C.C. 1999. An EPR investigation of surfactant action on bacterial membranes. FEMS Microbiol. Lett. 177, 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Gomelsky, M. 2011. cAMP, c-di-GMP, c-di-AMP and now cGMP: Bacteria use them all! Mol. Microbiol. 79, 562–565.

    CAS  Google Scholar 

  • Gov, Y., Bitler, A., Dell’Acqua, G., Torres, J.V., and Balaban, N. 2001. RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: Structure and function analysis. Peptides 22, 1609–1620.

    Article  CAS  PubMed  Google Scholar 

  • Gray, G. and Wilkinson, S. 1965. The effect of ethylenediaminetetraacetic acid on the cell walls of some Gram-negative bacteria. Microbiology 39, 385–399.

    CAS  Google Scholar 

  • Gutierrez, J.A., Crowder, T., Rinaldo-Matthis, A., Ho, M.C., Almo, S.C., and Schramm, V.L. 2009. Transition state analogs of 5′-methylthioadenosine nucleosidase disrupt quorum sensing. Nat. Chem. Biol. 5, 251–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, Y., Hou, S., Simon, K.A., Ren, D., and Luk, Y.Y. 2008. Identifying the important structural elements of brominated furanones for inhibiting biofilm formation by Escherichia coli. Bioorg. Med. Chem. Lett. 18, 1006–1010.

    Article  CAS  PubMed  Google Scholar 

  • Hanzelka, B.L. and Greenberg, E.P. 1996. Quorum sensing in Vibrio fischeri: Evidence that s-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J. Bacteriol. 178, 5291–5294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Z.Y., Wang, Q., Hu, Y.J., Liang, J.P., Jiang, Y.T., Ma, R., Tang, Z.S., and Huang, Z.W. 2012. Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int. J. Antimicrob. Agents 40, 30–35.

    Article  PubMed  CAS  Google Scholar 

  • Hengzhuang, W., Wu, H., Ciofu, O., Song, Z., and Høiby, N. 2011. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 55, 4469–4474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilmarsson, H., Larusson, L.V., and Thormar, H. 2006. Virucidal effect of lipids on visna virus, a lentivirus related to HIV. Arch. Virol. 151, 1217–1224.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, N., Lee, B., Hentzer, M., Rasmussen, T.B., Song, Z.J., Johansen, H.K., Givskov, M., and Hoiby, N. 2007. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr-/- mice. Antimicrob. Agents Chemother. 51, 3677–3687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtje, J.V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howlin, R.P., Cathie, K., Hall-Stoodley, L., Cornelius, V., Duignan, C., Allan, R.N., Fernandez, B.O., Barraud, N., Bruce, K.D., and Jefferies, J. 2017. Low-dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis. Mol. Ther. 25, 2104–2116.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J.J., Han, J.I., Zhang, L.H., and Leadbetter, J.R. 2003. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 69, 5941–5949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hume, E.B.H., Baveja, J., Muir, B.W., Schubert, T.L., Kumar, N., Kjelleberg, S., Griesser, H.J., Thissen, H., Read, R., Poole-Warren, L.A., et al. 2004. The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. Biomaterials 25, 5023–5030.

    Article  CAS  PubMed  Google Scholar 

  • Ishida, T., Ikeda, T., Takiguchi, N., Kuroda, A., Ohtake, H., and Kato, J. 2007. Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides. Appl. Environ. Microbiol. 73, 3183–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova, K., Fernandes, M.M., Francesko, A., Mendoza, E., Guezguez, J., Burnet, M., and Tzanov, T. 2015. Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters. ACS Appl. Mater. Interfaces 7, 27066–27077.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, K., Fernandes, M.M., Francesko, A., Mendoza, E., Guezguez, J., Burnet, M., and Tzanov, T. 2015. Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters. ACS Appl. Mater. Interfaces 7, 27066–27077.

    Article  CAS  PubMed  Google Scholar 

  • Izano, E.A., Shah, S.M., and Kaplan, J.B. 2009. Intercellular adhesion and biocide resistance in nontypeable Haemophilus influenzae biofilms. Microb. Pathog. 46, 207–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssens, J.C., Steenackers, H., Robijns, S., Gellens, E., Levin, J., Zhao, H., Hermans, K., De Coster, D., Verhoeven, T.L., Marchal, K., et al. 2008. Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 74, 6639–6648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo, S.J., Kwon, H., Jeong, S.Y., Lee, S.H., Oh, H.S., Yi, T., Lee, C.H., and Kim, T.G. 2016. Effects of quorum quenching on the microbial community of biofilm in an anoxic/oxic MBR for wastewater treatment. J. Microbiol. Biotechnol. 26, 1593–1604.

    Article  PubMed  Google Scholar 

  • Jonsson, B. 1998. Surfactants and polymers in aqueous solution, John Wiley & Sons.

    Google Scholar 

  • Jothiprakasam, V., Sambantham, M., Chinnathambi, S., and Vijayaboopathi, S. 2017. Candida tropicalis biofilm inhibition by ZnO nanoparticles and EDTA. Arch. Oral Biol. 73, 21–24.

    Article  CAS  PubMed  Google Scholar 

  • Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakurai, T., Oohusa, T., Hara, Y., and Chihara, M. 1988. An allelopathic fatty-acid from the brown alga Cladosiphon okamuranus. Phytochemistry 27, 731–735.

    Article  CAS  Google Scholar 

  • Kalia, D., Merey, G., Nakayama, S., Zheng, Y., Zhou, J., Luo, Y.L., Guo, M., Roembke, B.T., and Sintim, H.O. 2013. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem. Soc. Rev. 42, 305–341.

    Article  CAS  PubMed  Google Scholar 

  • Kalkowski, I. and Conrad, R. 1991. Metabolism of nitric-oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus. FEMS Microbiol. Lett. 82, 107–111.

    Article  CAS  Google Scholar 

  • Kaplan, J.B. 2009. Therapeutic potential of biofilm-dispersing enzymes. Int. J. Artif. Organs 32, 545–554.

    CAS  PubMed  Google Scholar 

  • Kenny, J.G., Ward, D., Josefsson, E., Jonsson, I.M., Hinds, J., Rees, H.H., Lindsay, J.A., Tarkowski, A., and Horsburgh, M.J. 2009. The Staphylococcus aureus response to unsaturated long chain free fatty acids: Survival mechanisms and virulence implications. PLoS One 4, e4344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kihara, K., Kito, N., and Furuta, T. 1997. Synergistic bactericidal activity in binary mixtures of an anionic surfactant and polyvalent metal lons. Biocontrol Sci. 2, 13–17.

    Article  CAS  Google Scholar 

  • Kim, C., Kim, J., Park, H.Y., Lee, J.H., Park, H.J., Kim, C.K., and Yoon, J. 2009a. Structural understanding of quorum-sensing inhibitors by molecular modeling study in Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 83, 1095–1103.

    Article  CAS  PubMed  Google Scholar 

  • Kim, C., Kim, J., Park, H.Y., Park, H.J., Kim, C.K., Yoon, J., and Lee, J.H. 2009b. Development of inhibitors against TraR quorumsensing system in Agrobacterium tumefaciens by molecular modeling of the ligand-receptor interaction. Mol. cells 28, 447–453.

    Article  CAS  PubMed  Google Scholar 

  • Kim, C., Kim, J., Park, H.Y., Park, H.J., Lee, J.H., Kim, C.K., and Yoon, J. 2008a. Furanone derivatives as quorum-sensing antagonists of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 80, 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. and Park, W. 2015. Indole: A signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J. Microbiol. 53, 421–428.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Pitts, B., Stewart, P.S., Camper, A., and Yoon, J. 2008b. Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob. Agents Chemother. 52, 1446–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S.K., Park, H.Y., and Lee, J.H. 2015a. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect. Appl. Environ. Microbiol. 81, 2328–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Jung, U.T., Kim, S.K., Lee, J.H., Choi, H.S., Kim, C.S., and Jeong, M.Y. 2015b. Nanostructured multifunctional surface with antireflective and antimicrobial characteristics. ACS Appl. Mater. Interfaces 7, 326–331.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.K., Im, S.J., Yeom, D.H., and Lee, J.H. 2012. AntR-mediated bidirectional activation of antA and antR, anthranilate degradative genes in Pseudomonas aeruginosa. Gene 505, 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.K. and Lee, J.H. 2016. Biofilm dispersion in Pseudomonas aeruginosa. J. Microbiol. 54, 71–85.

    Article  CAS  PubMed  Google Scholar 

  • Kiran, M.D., Adikesavan, N.V., Cirioni, O., Giacometti, A., Silvestri, C., Scalise, G., Ghiselli, R., Saba, V., Orlando, F., Shoham, M., et al. 2008. Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening. Mol. Pharmacol. 73, 1578–1586.

    Article  CAS  PubMed  Google Scholar 

  • Kite, P., Eastwood, K., Sugden, S., and Percival, S.L. 2004. Use of in vivo-generated biofilms from hemodialysis catheters to test the efficacy of a novel antimicrobial catheter lock for biofilm eradication in vitro. J. Clin. Microbiol. 42, 3073–3076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodicek, E. and Worden, A. 1945. The effect of unsaturated fatty acids on Lactobacillus helveticus and other Gram-positive micro-organisms. Biochem. J. 39, 78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodkin-Gal, I., Romero, D., Cao, S., Clardy, J., Kolter, R., and Losick, R. 2010. D-amino acids trigger biofilm disassembly. Science 328, 627–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, J.K. 2008. Lysostaphin: An antistaphylococcal agent. Appl. Microbiol. Biotechnol. 80, 555–561.

    Article  CAS  PubMed  Google Scholar 

  • Lam, H., Oh, D.C., Cava, F., Takacs, C.N., Clardy, J., de Pedro, M.A., and Waldor, M.K. 2009. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325, 1552–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskar, K., Faisal, S.M., Rauf, A., Ahmed, A., and Owais, M. 2017. Undec-10-enoic acid functionalized chitosan based novel nanoconjugate: An enhanced anti-bacterial/biofilm and anti-cancer potential. Carbohydr. Polym. 166, 14–23.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.H., Wood, T.K., and Lee, J. 2015. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 23, 707–718.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Bansal, T., Jayaraman, A., Bentley, W.E., and Wood, T.K. 2007a. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl. Environ. Microbiol. 73, 4100–4109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Jayaraman, A., and Wood, T.K. 2007b. Indole is an interspecies biofilm signal mediated by SdiA. BMC Microbiol. 7, 1.

    Article  CAS  Google Scholar 

  • Lee, J., Lee, I., Nam, J., Hwang, D.S., Yeon, K.M., and Kim, J. 2017. Immobilization and stabilization of acylase on carboxylated polyaniline nanofibers for highly effective antifouling application via quorum quenching. ACS Appl. Mater. Interfaces 9, 15424–15432.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.H., Cho, M.H., and Lee, J. 2011. 3-Indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ. Microbiol. 13, 62–73.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.H., Kim, Y.G., Kim, C.J., Lee, J.C., Cho, M.H., and Lee, J. 2012. Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157:H7 biofilm formation. Appl. Microbiol. Biotechnol. 96, 1071–1078.

    Article  CAS  PubMed  Google Scholar 

  • Leiman, S.A., May, J.M., Lebar, M.D., Kahne, D., Kolter, R., and Losick, R. 2013. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J. Bacteriol. 195, 5391–5395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy, C., Delbarre-Ladrat, C., Ghillebaert, F., Compere, C., and Combes, D. 2008. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24, 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Wang, W., Xu, S.X., Magarvey, N.A., and McCormick, J.K. 2011. Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc. Natl. Acad. Sci. USA 108, 3360–3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X.H., Kim, S.K., and Lee, J.H. 2017. Anti-biofilm effects of anthranilate on a broad range of bacteria. Sci. Rep. 7, 8604.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, Y.H., Xu, J.L., Hu, J.Y., Wang, L.H., Ong, S.L., Leadbetter, J.R., and Zhang, L.H. 2003. Acyl-homoserine lactone acylase from Ralstonia strain Xj12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47, 849–860.

    Article  PubMed  Google Scholar 

  • Mah, T.F.C. and O’Toole, G.A. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39.

    Article  CAS  PubMed  Google Scholar 

  • Mann, E.E., Rice, K.C., Boles, B.R., Endres, J.L., Ranjit, D., Chandramohan, L., Tsang, L.H., Smeltzer, M.S., Horswill, A.R., and Bayles, K.W. 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4, e5822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mann, E.E. and Wozniak, D.J. 2012. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev. 36, 893–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margel, D., Mizrahi, M., Regev-Shoshani, G., Mary, K.O., Moshe, M., Ozalvo, R., Shavit-Grievink, L., Baniel, J., Kedar, D., Yossepowitch, O., et al. 2017. Nitric oxide charged catheters as a potential strategy for prevention of hospital acquired infections. PLoS One 12, e0174443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDonnell, G. and Russell, A.D. 1999. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 12, 147–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGrattan, C.J., Sullivan, J.D., and Ikawa, M. 1976. Inhibition of chlorella (chlorophyceae) growth by fatty acids, using the paper disc method. J. Phycol. 12, 129–131.

    CAS  Google Scholar 

  • Mereghetti, L., Quentin, R., Marquet-Van der Mee, N., and Audurier, A. 2000. Low sensitivity of Listeria monocytogenes to quaternary ammonium compounds. Appl. Environ. Microbiol. 66, 5083–5086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meylheuc, T., van Oss, C.J., and Bellon-Fontaine, M.N. 2001. Adsorption of biosurfactant on solid surfaces and consequences regarding the bioadhesion of Listeria monocytogenes LO28. J. Appl. Microbiol. 91, 822–832.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M.B. and Bassler, B.L. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199.

    Article  CAS  PubMed  Google Scholar 

  • Minvielle, M.J., Bunders, C.A., and Melander, C. 2013. Indole-triazole conjugates are selective inhibitors and inducers of bacterial biofilms. Medchemcomm 4, 916–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mireles, J.R., Toguchi, A., and Harshey, R.M. 2001. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. J. Bacteriol. 183, 5848–5854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • More, M.I., Finger, L.D., Stryker, J.L., Fuqua, C., Eberhard, A., and Winans, S.C. 1996. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272, 1655–1658.

    Article  CAS  PubMed  Google Scholar 

  • Moscoso, M., Garcia, E., and Lopez, R. 2006. Biofilm formation by Streptococcus pneumoniae: Role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J. Bacteriol. 188, 7785–7795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulcahy, H., Charron-Mazenod, L., and Lewenza, S. 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 4, e1000213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nealson, K.H., Platt, T., and Hastings, J.W. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104, 313–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neethirajan, S., Clond, M.A., and Vogt, A. 2014. Medical biofilmsnanotechnology approaches. J. Biomed. Nanotechnol. 10, 2806–2827.

    Article  CAS  PubMed  Google Scholar 

  • Nemoto, K., Hirota, K., Ono, T., Murakami, K., Murakami, K., Nagao, D., and Miyake, Y. 2000. Effect of varidase (streptokinase) on biofilm formed by Staphylococcus aureus. Chemotherapy 46, 111–115.

    Article  CAS  PubMed  Google Scholar 

  • Ni, N.T., Choudhary, G., Li, M.Y., and Wang, B.H. 2008. Pyrogallol and its analogs can antagonize bacterial quorum sensing in Vibrio harveyi. Bioorg. Med. Chem. Lett. 18, 1567–1572.

    Article  CAS  PubMed  Google Scholar 

  • Nijland, R., Hall, M.J., and Burgess, J.G. 2010. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 5, e15668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitschke, M. and Costa, S.G.V.A.O. 2007. Biosurfactants in food industry. Trends Food Sci. Tech. 18, 252–259.

    Article  CAS  Google Scholar 

  • Niu, C., Afre, S., and Gilbert, E.S. 2006. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett. Appl. Microbiol. 43, 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Otvos, L.O.I., Rogers, M.E., Consolvo, P.J., Condie, B.A., Lovas, S., Bulet, P., and Blaszczyk-Thurin, M. 2000. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39, 14150–14159.

    Article  CAS  PubMed  Google Scholar 

  • Overhage, J., Campisano, A., Bains, M., Torfs, E.C.W., Rehm, B.H.A., and Hancock, R.E.W. 2008. Human host defense peptide ll-37 prevents bacterial biofilm formation. Infect. Immun. 76, 4176–4182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, C.B., Kim, H.S., and Kim, S.C. 1998. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244, 253–257.

    Article  CAS  PubMed  Google Scholar 

  • Parsek, M.R. and Greenberg, E.P. 2005. Sociomicrobiology: The connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33.

    Article  CAS  PubMed  Google Scholar 

  • Parsek, M.R., Val, D.L., Hanzelka, B.L., Cronan, J.E., and Greenberg, E.P. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96, 4360–4365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passador, L., Tucker, K.D., Guertin, K.R., Journet, M.P., Kende, A.S., and Iglewski, B.H. 1996. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J. Bacteriol. 178, 5995–6000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrzykat, A., Friedrich, C.L., Zhang, L.J., Mendoza, V., and Hancock, R.E.W. 2002. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob. Agents Chemother. 46, 605–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira, M.O., Machado, I., Simões, M., and Vieira, M. 2007. Preventing biofilm formation using surfactants. BiofilmClub 167–174.

    Google Scholar 

  • Pogodin, S., Hasan, J., Baulin, V.A., Webb, H.K., Truong, V.K., Nguyen, T.H.P., Boshkovikj, V., Fluke, C.J., Watson, G.S., Watson, J.A., et al. 2013. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys. J. 104, 835–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, Z.Q., Ou, Y.Z., Yang, L.A., Zhu, Y.L., Tolker-Nielsen, T., Molin, S., and Qu, D. 2007. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153, 2083–2092.

    Article  CAS  PubMed  Google Scholar 

  • Römling, U., Galperin, M.Y., and Gomelsky, M. 2013. Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77, 1–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raad, I., Chatzinikolaou, I., Chaiban, G., Hanna, H., Hachem, R., Dvorak, T., Cook, G., and Costerton, W. 2003. In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob. Agents Chemother. 47, 3580–3585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramasubbu, N., Thomas, L.M., Ragunath, C., and Kaplan, J.B. 2005. Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. J. Mol. Biol. 349, 475–486.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, T.B., Skindersoe, M.E., Bjarnsholt, T., Phipps, R.K., Christensen, K.B., Jensen, P.O., Andersen, J.B., Koch, B., Larsen, T.O., Hentzer, M., et al. 2005. Identity and effects of quorumsensing inhibitors produced by Penicillium species. Microbiology 151, 1325–1340.

    Article  CAS  PubMed  Google Scholar 

  • Ren, D., Sims, J.J., and Wood, T.K. 2002. Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett. Appl. Microbiol. 34, 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Ren, D.C., Sims, J.J., and Wood, T.K. 2001. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ. Microbiol. 3, 731–736.

    Article  CAS  PubMed  Google Scholar 

  • Ren, D.C., Zuo, R.J., Barrios, A.F.G., Bedzyk, L.A., Eldridge, G.R., Pasmore, M.E., and Wood, T.K. 2005. Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl. Environ. Microbiol. 71, 4022–4034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reverchon, S., Chantegrel, B., Deshayes, C., Doutheau, A., and Cotte- Pattat, N. 2002. New synthetic analogues of N-acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorg. Med. Chem. Lett. 12, 1153–1157.

    Article  CAS  PubMed  Google Scholar 

  • Rohrer, L., Winterhalter, K.H., Eckert, J., and Kohler, P. 1986. Killing of Giardia lamblia by human-milk is mediated by unsaturated fatty acids. Antimicrob. Agents Chemother. 30, 254–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Root, J.L., McIntyre, O., Jacobs, N., and Daghlian, C. 1988. Inhibitory effect of disodium EDTA upon the growth of Staphylococcus epidermidis in vitro: Relation to infection prophylaxis of hickman catheters. Antimicrob. Agents Chemother. 32, 1627–1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy, V., Meyer, M.T., Smith, J.A.I., Gamby, S., Sintim, H.O., Ghodssi, R., and Bentley, W.E. 2013. AI-2 analogs and antibiotics: A synergistic approach to reduce bacterial biofilms. Appl. Microbiol. Biotechnol. 97, 2627–2638.

    Article  CAS  PubMed  Google Scholar 

  • Rui, L.Y., Reardon, K.F., and Wood, T.K. 2005. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl. Microbiol. Biotechnol. 66, 422–429.

    Article  CAS  PubMed  Google Scholar 

  • Ruzin, A. and Novick, R.P. 2000. Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. J. Bacteriol. 182, 2668–2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiman, L., Tabibi, S., Starner, T.D., San Gabriel, P., Winokur, P.L., Jia, H.P., McCray, P.B., and Tack, B.F. 2001. Cathelicidin peptides inhibit multiply antibiotic-resistant pathogens from patients with cystic fibrosis. Antimicrob. Agents Chemother. 45, 2838–2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San, T., Ertugay, O.C., Catli, T., Acar, M., Ertugay, C.K., Dag, I., and Cingi, C. 2015. Effects of surfactant on biofilm formation on silicone nasal splints. Eur. Arch. Otorhinolaryngol. 272, 345–349.

    Article  PubMed  Google Scholar 

  • Sauer, K., Cullen, M.C., Rickard, A.H., Zeef, L.A., Davies, D.G., and Gilbert, P. 2004. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186, 7312–7326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler, C.A. and Schuhardt, V. 1964. Lysostaphin: A new bacteriolytic agent for the Staphylococcus. Proc. Natl. Acad. Sci. USA 51, 414–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipper, C., Hornung, C., Bijtenhoorn, P., Quitschau, M., Grond, S., and Streit, W.R. 2009. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 75, 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Schittek, B., Paulmann, M., Senyurek, I., and Steffen, H. 2008. The role of antimicrobial peptides in human skin and in skin infectious diseases. Infect. Disord. Drug Targets 8, 135–143.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, F., Beutler, M., Enning, D., Lamprecht-Grandio, M., Zafra, O., Gonzalez-Pastor, J.E., and de Beer, D. 2011. The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: Biofilm formation, swarming, and dispersal. BMC Microbiol. 11, 111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, R.J., Lian, L.Y., Muharram, S.H., Cockayne, A., Wood, S.J., Bycroft, B.W., Williams, P., and Chan, W.C. 2003. Side-chainto-tail thiolactone peptide inhibitors of the staphylococcal quorum-sensing system. Bioorg. Med. Chem. Lett. 13, 2449–2453.

    Article  CAS  PubMed  Google Scholar 

  • Shah, A., Mond, J., and Walsh, S. 2004. Lysostaphin-coated catheters eradicate Staphylococccus aureus challenge and block surface colonization. Antimicrob. Agents Chemother. 48, 2704–2707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, G., Rajan, R., Zhu, J.G., Bell, C.E., and Pei, D.H. 2006. Design and synthesis of substrate and intermediate analogue inhibitors of S-ribosylhomocysteinase. J. Med. Chem. 49, 3003–3011.

    Article  CAS  PubMed  Google Scholar 

  • Sheu, C.W. and Freese, E. 1972. Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J. Bacteriol. 111, 516–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla, S.K. and Rao, T.S. 2013. Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K. J. Antibiot. (Tokyo) 66, 55–60.

    Article  CAS  Google Scholar 

  • Simoes, M., Pereira, M.O., and Vieira, M.J. 2005. Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res. 39, 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Singh, P. and Cameotra, S.S. 2004. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 22, 142–146.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K.M., Bu, Y., and Suga, H. 2003a. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol. 10, 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K.M., Bu, Y., and Suga, H. 2003b. Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem. Biol. 10, 563–571.

    Article  CAS  PubMed  Google Scholar 

  • Stenz, L., Francois, P., Fischer, A., Huyghe, A., Tangomo, M., Hernandez, D., Cassat, J., Linder, P., and Schrenzel, J. 2008. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol. Lett. 287, 149–155.

    Article  CAS  PubMed  Google Scholar 

  • Tang, K. and Zhang, X.H. 2014. Quorum quenching agents: Resources for antivirulence therapy. Mar. Drugs 12, 3245–3282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang, P.F., Zhang, W., Wang, Y., Zhang, B.X., Wang, H., Lin, C.J., and Zhang, L.H. 2011. Effect of superhydrophobic surface of titanium on Staphylococcus aureus adhesion. J. Nanomater. DOI: http://dx.doi.org/10.1155/2011/178921.

    Google Scholar 

  • Taylor, P.K., Yeung, A.T.Y., and Hancock, R.E.W. 2014. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J. Biotechnol. 191, 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Tetz, G.V., Artemenko, N.K., and Tetz, V.V. 2009. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob. Agents Chemother. 53, 1204–1209.

    Article  CAS  PubMed  Google Scholar 

  • Thallinger, B., Prasetyo, E.N., Nyanhongo, G.S., and Guebitz, G.M. 2013. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnol. J. 8, 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Thormar, H., Isaacs, C.E., Brown, H.R., Barshatzky, M.R., and Pessolano, T. 1987. Inactivation of enveloped viruses and killing of cells by fatty-acids and monoglycerides. Antimicrob. Agents Chemother. 31, 27–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turakhia, M.H., Cooksey, K.E., and Characklis, W.G. 1983. Influence of a calcium-specific chelant on biofilm removal. Appl. Environ. Microbiol. 46, 1236–1238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz, S., Chhabra, S.R., Camara, M., Williams, P., Oger, P., and Dessaux, Y. 2005. N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151, 3313–3322.

    Article  CAS  PubMed  Google Scholar 

  • Uroz, S. and Heinonsalo, J. 2008. Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol. Ecol. 65, 271–278.

    Article  CAS  PubMed  Google Scholar 

  • Val, D.L. and Cronan, J.E. 1998. In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J. Bacteriol. 180, 2644–2651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hamme, J.D., Singh, A., and Ward, O.P. 2006. Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv. 24, 604–620.

    Article  PubMed  CAS  Google Scholar 

  • Velraeds, M.M., van de Belt-Gritter, B., van der Mei, H.C., Reid, G., and Busscher, H.J. 1998. Interference in initial adhesion of uropathogenic bacteria and yeasts to silicone rubber by a Lactobacillus acidophilus biosurfactant. J. Med. Microbiol. 47, 1081–1085.

    Article  CAS  PubMed  Google Scholar 

  • Vinoj, G., Vaseeharan, B., Thomas, S., Spiers, A.J., and Shanthi, S. 2014. Quorum-quenching activity of the AHL-lactonase from Bacillus licheniformis DAHB1 inhibits Vibrio biofilm formation in vitro and reduces shrimp intestinal colonisation and mortality. Mar. Biotechnol. 16, 707–715.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G.S., Li, X., and Wang, Z. 2016. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093.

    Article  CAS  PubMed  Google Scholar 

  • Waters, C.M. and Bassler, B.L. 2005. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346.

    Article  CAS  PubMed  Google Scholar 

  • Weiland-Brauer, N., Kisch, M.J., Pinnow, N., Liese, A., and Schmitz, R.A. 2016. Highly effective inhibition of biofilm formation by the first metagenome-derived AI-2 quenching enzyme. Front. Microbiol. 7, 1098.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitchurch, C.B., Tolker-Nielsen, T., Ragas, P.C., and Mattick, J.S. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Moser, C., Wang, H.Z., Hoiby, N., and Song, Z.J. 2015. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 7, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, S., Huster, D., Waring, A., Lehrer, R.I., Kearney, W., Tack, B.F., and Hong, M. 2001. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. Biophys. J. 81, 2203–2214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, F., Wang, L.H., Wang, J., Dong, Y.H., Hu, J.Y., and Zhang, L.H. 2005. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 579, 3713–3717.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Harroun, T.A., Weiss, T.M., Ding, L., and Huang, H.W. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81, 1475–1485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, L., Weiss, T.M., Lehrer, R.I., and Huang, H.W. 2000. Crystallization of antimicrobial pores in membranes: Magainin and protegrin. Biophys. J. 79, 2002–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda, H., Ajiki, Y., Koga, T.,, H., and Yokota, T. 1993. Interaction between biofilms formed by Pseudomonas aerugKawadainosa and clarithromycin. Antimicrob. Agents Chemother. 37, 1749–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaiou, M., Nizet, V., and Gallo, R.L. 2003. Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J. Invest. Dermatol. 120, 810–816.

    Article  CAS  PubMed  Google Scholar 

  • Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Zhao, R., Ma, B., Gao, H., Xue, X., Qu, D., Li, M., Meng, J., Luo, X., and Hou, Z. 2016. Oligomerization of RNAIII-inhibiting peptide inhibits adherence and biofilm formation of methicillin-resistant Staphylococcus aureus in vitro and in vivo. Microb. Drug Resist. 22, 193–201.

    Article  CAS  PubMed  Google Scholar 

  • Zumft, W.G. 2002. Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J. Mol. Microbiol. Biotechnol. 4, 277–286.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon-Hee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XH., Lee, JH. Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol. 55, 753–766 (2017). https://doi.org/10.1007/s12275-017-7274-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-7274-x

Keywords

Navigation