Skip to main content
Log in

Rhodoferax koreense sp. nov, an obligately aerobic bacterium within the family Comamonadaceae, and emended description of the genus Rhodoferax

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Gram-staining-negative, uniflagellated, rod-shaped, designated as DCY110T, was isolated from sludge located in Gangwon province, Republic of Korea. The phylogenetic tree of 16S rRNA gene sequence showed that the strain DCY110T belonged to the genus Rhodoferax with a close similarity to Rhodoferax saidenbachensis DSM 22694T (97.7%), Rhodoferax antarcticus DSM 24876T (97.5%), Rhodoferax ferrireducens DSM 15236T (97.3%), and Rhodoferax fermentans JCM 7819T (96.7%). The predominant isoprenoid quinine was ubiquinone (Q-8). DNA G + C content was 62.8 mol%. The major polar lipids were phosphatidylethanolamine and two unidentified phospholipids. The major fatty acids (> 10%) were C12:0, C16:0, summed feature 3 (which comprised C16:1 ω7c and/or C16:1 ω6c). The DNA-DNA relatedness values between the strain DCY110T and the closely related relatives used in this study were lower than 70%. Based on the following polyphasic analysis, the strain DCY110T is considered as a novel species of the genus Rhodoferax, for which the name Rhodoferax koreense sp. nov. is proposed. The type strain is DCY-110T (= KCTC 52288T = JCM 31441T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzai, Y., Kim, H., Park, J.Y., Wakabayashi, H., and Oyaizu, H. 2000. Phylogenetic affiliation of the Pseudomonads based on 16s rrna sequence. Int. J. Syst. Evol. Microbiol. 50, 1563–1589.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, A., Kirby, W., Sherris, J.C., and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493.

    CAS  PubMed  Google Scholar 

  • Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52, 1049–1070.

    CAS  PubMed  Google Scholar 

  • Collins, M. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316–354.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, L. and Yokota, A. 2004. Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int. J. Syst. Evol. Microbiol. 54, 2223–2230.

    Article  CAS  PubMed  Google Scholar 

  • Ding, L. and Yokota, A. 2010. Curvibacter fontana sp. nov., a microaerobic bacteria isolated from well water. J. Gen. Appl. Microbiol. 56, 267–271.

    Article  CAS  PubMed  Google Scholar 

  • Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39, 224–229.

    Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Finneran, K.T., Johnsen, C.V., and Lovley, D.R. 2003. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe (iii). Int. J. Syst. Evol. Microbiol. 53, 669–673.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Biol. 20, 406–416.

    Article  Google Scholar 

  • Hamaki, T., Suzuki, M., Fudou, R., Jojima, Y., Kajiura, T., Tabuchi, A., Sen, K., and Shibai, H. 2005. Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J. Biosci. Bioeng. 99, 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi, A., Hoshino, Y., and Satoh, T. 1991. Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch. Microbiol. 155, 330–336.

    Article  Google Scholar 

  • Jin, L., Kim, K.K., Ahn, C.Y., and Oh, H.M. 2012. Variovorax defluvii sp. nov., isolated from sewage. Int. J. Syst. Evol. Microbiol. 62, 1779–1783.

    Article  CAS  PubMed  Google Scholar 

  • Kaden, R., Spröer, C., Beyer, D., and Krolla-Sidenstein, P. 2014. Rhodoferax saidenbachensis sp. nov., a psychrotolerant, very slowly growing bacterium within the family comamonadaceae, proposal of appropriate taxonomic position of Albidiferax ferrireducens strain t118t in the genus Rhodoferax and emended description of the genus Rhodoferax. Int. J. Syst. Evol. Microbiol. 64, 1186–1193.

    Article  CAS  PubMed  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., and Yi, H. 2012. Introducing eztaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.K., Im, W.T., Ohta, H., Lee, M., and Lee, S.T. 2005. Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family sphingomonadaceae in α-4 subclass of the proteobacteria. J. Microbiol. 43, 152–157.

    CAS  PubMed  Google Scholar 

  • Kim, B.Y., Weon, H.Y., Yoo, S.H., Lee, S.Y., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2006. Variovorax soli sp. nov., isolated from greenhouse soil. Int. J. Syst. Evol. Microbiol. 56, 2899–2901.

    Article  CAS  PubMed  Google Scholar 

  • Kuykendall, L. 2006. List of new names and new combinations previously effectively, but not validly, published. Validation list no. 107. Int. J. Syst. Evol. Microbiol. 56, 1–6.

    Article  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–176. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematics. Chichester, Wiley.

  • Madigan, M.T., Jung, D.O., Woese, C.R., and Achenbach, L.A. 2000. Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an antarctic microbial mat. Arch. Microbiol. 173, 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Evol. Microbiol. 39, 159–167.

    CAS  Google Scholar 

  • Minnikin, D., O’donnell, A., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Prescott, L. and Harley, J. 2001. Laboratory exercises in microbiology 5th edn. McGraw-Hill, New York, USA.

    Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The clustal_x windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeon-Ju Kim or Deok-Chun Yang.

Additional information

The NCBI GenBank accession number for the 16S rRNA gene sequence of strain DCY110T is KU519435.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

12275_2017_7033_MOESM1_ESM.pdf

Supplementary data Fig. S1. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, showing the taxonomic position of strain DCY110T in the genus Rhodoferax

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farh, M.EA., Kim, YJ., Singh, P. et al. Rhodoferax koreense sp. nov, an obligately aerobic bacterium within the family Comamonadaceae, and emended description of the genus Rhodoferax . J Microbiol. 55, 767–774 (2017). https://doi.org/10.1007/s12275-017-7033-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-7033-z

Keywords

Navigation