Skip to main content
Log in

Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

2-deoxyribose-5-phosphate aldolase (DERA) is a class I aldolase that catalyzes aldol condensation of two aldehydes in the active site, which is particularly germane in drug manufacture. Structural and biochemical studies have shown that the active site of DERA is typically loosely packed and displays broader substrate specificity despite sharing conserved folding architecture with other aldolases. The most distinctive structural feature of DERA compared to other aldolases is short and flexible C-terminal region. This region is also responsible for substrate recognition. Therefore, substrate tolerance may be related to the C-terminal structural features of DERA. Here, we determined the crystal structures of full length and C-terminal truncated DERA from Streptococcus suis (SsDERA). In common, both contained the typical (α/β)8 TIM-barrel fold of class I aldolases. Surprisingly, C-terminal truncation resulting in missing the last α9 and β8 secondary elements, allowed DERA to maintain activity comparable to the fulllength enzyme. Specifically, Arg186 and Ser205 residues at the C-terminus appeared mutually supplemental or less indispensible for substrate phosphate moiety recognition. Our results suggest that DERA might adopt a shorter C-terminal region than conventional aldolases during evolution pathway, resulting in a broader range of substrate tolerance through active site flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. 2002. Phenix: Building new software for automated crystallographic structure determination. Acta Crystallogr. D. Biol. Crystallogr. 58, 1948–1954.

    Article  PubMed  Google Scholar 

  • Barth, P.T., Beacham, I.R., Ahmad, S.I., and Pritchard, R.H. 1968. The inducer of the deoxynucleoside phosphorylases and deoxyriboaldolase in Escherichia coli. Biochim. Biophys. Acta 161, 554–557.

    Article  CAS  PubMed  Google Scholar 

  • Baugh, L., Phan, I., Begley, D.W., Clifton, M.C., Armour, B., Dranow, D.M., Taylor, B.M., Muruthi, M.M., Abendroth, J., Fairman, J.W., et al. 2015. Increasing the structural coverage of tuberculosis drug targets. Tuberculosis 95, 142–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkowitz, S.A. 2006. Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. AAPS J. 8, e590–605.

    Article  Google Scholar 

  • Berthiaume, L., Loisel, T.P., and Sygusch, J. 1991. Carboxyl terminus region modulates catalytic activity of recombinant maize aldolase. J. Biol. Chem. 266, 17099–17105.

    CAS  PubMed  Google Scholar 

  • Blom, N. and Sygusch, J. 1997. Product binding and role of the cterminal region in class i d-fructose 1,6-bisphosphate aldolase. Nat. Struct. Biol. 4, 36–39.

    Article  CAS  PubMed  Google Scholar 

  • Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. 2010. Molprobity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corsini, A., Maggi, F.M., and Catapano, A.L. 1995. Pharmacology of competitive inhibitors of HMg-CoA reductase. Pharmacol. Res. 31, 9–27.

    Article  CAS  PubMed  Google Scholar 

  • DeSantis, G., Liu, J., Clark, D.P., Heine, A., Wilson, I.A., and Wong, C.H. 2003. Structure-based mutagenesis approaches toward expanding the substrate specificity of d-2-deoxyribose-5-phosphate aldolase. Bioorg. Med. Chem. 11, 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R.C. 2004. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emsley, P. and Cowtan, K. 2004. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132.

    Article  PubMed  Google Scholar 

  • Endo, A. 1992. The discovery and development of hmgcoa reductase inhibitors. J. Lipid R. 33, 1569–1582.

    CAS  Google Scholar 

  • Greenberg, W.A., Varvak, A., Hanson, S.R., Wong, K., Huang, H., Chen, P., and Burk, M.J. 2004. Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. Proc. Natl. Acad. Sci. USA 101, 5788–5793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, B.B., Devenish, S.R., Dobson, R.C., Muscroft-Taylor, A.C., and Gerrard, J.A. 2009. The c-terminal domain of Escherichia coli dihydrodipicolinate synthase (dhdps) is essential for maintenance of quaternary structure and efficient catalysis. Biochem. Biophys. Res. Commun. 380, 802–806.

    Article  CAS  PubMed  Google Scholar 

  • Hannappel, E., MacGregor, J.S., Davoust, S., and Horecker, B.L. 1982. Limited proteolysis of liver and muscle aldolases: Effects of subtilisin, cathepsin b, and Staphylococcus aureus protease. Arch. Biochem. Biophys. 214, 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Heine, A., DeSantis, G., Luz, J.G., Mitchell, M., Wong, C.H., and Wilson, I.A. 2001. Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294, 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Heine, A., Luz, J.G., Wong, C.H., and Wilson, I.A. 2004. Analysis of the class i aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99 Å resolution. J. Mol. Biol. 343, 1019–1034.

    Article  CAS  PubMed  Google Scholar 

  • Humphreys, L., Reid, S., and Masters, C. 1986. Evidence for the spatial separation of the binding sites for substrate and for cytoskeletal proteins on the enzyme aldolase. Int. J. Biochem. 18, 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Istvan, E.S. and Deisenhofer, J. 2001. Structural mechanism for statin inhibition of HMg-CoA reductase. Science 292, 1160–1164.

    Article  CAS  PubMed  Google Scholar 

  • Krissinel, E. and Henrick, K. 2004. Secondary-structure matching (ssm), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D. Biol. Crystallogr. 60, 2256–2268.

    Article  CAS  PubMed  Google Scholar 

  • Krissinel, E. and Henrick, K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Andya, J.D., and Shire, S.J. 2006. A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J. 8, e580–589.

    Article  Google Scholar 

  • Lokanath, N.K., Shiromizu, I., Ohshima, N., Nodake, Y., Sugahara, M., Yokoyama, S., Kuramitsu, S., Miyano, M., and Kunishima, N. 2004. Structure of aldolase from thermus thermophilus hb8 showing the contribution of oligomeric state to thermostability. Acta Crystallogr. D. Biol. Crystallogr. 60, 1816–1823.

    Article  PubMed  Google Scholar 

  • Lun, Z.R., Wang, Q.P., Chen, X.G., Li, A.X., and Zhu, X.Q. 2007. Streptococcus suis: An emerging zoonotic pathogen. Lancet. Infect. Dis. 7, 201–209.

    Article  PubMed  Google Scholar 

  • Machajewski, T.D. and Wong, C.H. 2000. The catalytic asymmetric aldol reaction. Angew. Chem. Int. Edi. Engl. 39, 1352–1374.

    Article  CAS  Google Scholar 

  • Otwinowski, Z. 1997. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 1–9.

    Google Scholar 

  • Rashid, N., Imanaka, H., Fukui, T., Atomi, H., and Imanaka, T. 2004. Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Bacteriol. 186, 4185–4191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert, X. and Gouet, P. 2014. Deciphering key features in protein structures with the new endscript server. Nucleic Acids Res. 42, W320–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba, H., Tsuge, H., Shimoya, I., Kawakami, R., Goda, S., Kawarabayasi, Y., Katunuma, N., Ago, H., Miyano, M., and Ohshima, T. 2003. The first crystal structure of archaeal aldolase. Unique tetrameric structure of 2-deoxy-d-ribose-5-phosphate aldolase from the hyperthermophilic archaea Aeropyrum pernix. J. Biol. Chem. 278, 10799–10806.

    CAS  PubMed  Google Scholar 

  • Schuck, P. 2003. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. 320, 104–124.

    Article  CAS  PubMed  Google Scholar 

  • Sgarrella, F., Poddie, F.P.A., Meloni, M.A., Sciola, L., Pippia, P., and Tozzi, M.G. 1997. Channelling of deoxyribose moiety of exogenous DNA into carbohydrate metabolism: Role of deoxyriboaldolase. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 117, 253–257.

    Article  CAS  PubMed  Google Scholar 

  • St-Jean, M. and Sygusch, J. 2007. Stereospecific proton transfer by a mobile catalyst in mammalian fructose-1,6-bisphosphate aldolase. J. Biol. Chem. 282, 31028–31037.

    Article  CAS  PubMed  Google Scholar 

  • Staats, J.J., Feder, I., Okwumabua, O., and Chengappa, M.M. 1997. Streptococcus suis: Past and present. Vet. Res. Commun. 21, 381–407.

    Article  CAS  PubMed  Google Scholar 

  • Sygusch, J., Beaudry, D., and Allaire, M. 1987. Molecular architecture of rabbit skeletal muscle aldolase at 2.7-a resolution. Proc. Natl. Acad. Sci. USA 84, 7846–7850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tozzi, M.G., Camici, M., Mascia, L., Sgarrella, F., and Ipata, P.L. 2006. Pentose phosphates in nucleoside interconversion and catabolism. FEBS J. 273, 1089–1101.

    Article  CAS  PubMed  Google Scholar 

  • Vagin, A. and Teplyakov, A. 2010. Molecular replacement with molrep. Acta Crystallogr. D. Biol. Crystallogr. 66, 22–25.

    Article  CAS  PubMed  Google Scholar 

  • Vedadi, M., Lew, J., Artz, J., Amani, M., Zhao, Y., Dong, A., Wasney, G.A., Gao, M., Hills, T., Brokx, S., et al. 2007. Genome-scale protein expression and structural biology of plasmodium falciparum and related apicomplexan organisms. Mol. Biochem. Parasitol. 151, 100–110.

    Article  CAS  PubMed  Google Scholar 

  • Wertheim, H.F., Nghia, H.D., Taylor, W., and Schultsz, C. 2009. Streptococcus suis: An emerging human pathogen. Clin. Infect. Dis. 48, 617–625.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Haeng Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, TP., Kim, JS., Woo, MH. et al. Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis . J Microbiol. 54, 311–321 (2016). https://doi.org/10.1007/s12275-016-6029-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6029-4

Keywords

Navigation