Skip to main content
Log in

Innate host defenses against Cryptococcus neoformans

  • Review
  • Biology of Human Fungal Pathogen
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, can cause life-threatening infections of the central nervous system in immunocompromised and immunocompetent individuals. Cryptococcal meningoencephalitis is the most common disseminated fungal infection in AIDS patients, and remains the third most common invasive fungal infection among organ transplant recipients. The administration of highly active antiretroviral therapy (HAART) has resulted in a decrease in the number of cases of AIDS-related cryptococcosis in developed countries, but in developing countries where HAART is not readily available, Cryptococcus is still a major concern. Therefore, there is an urgent need for the development of novel therapies and/or vaccines to combat cryptococcosis. Understanding the protective immune responses against Cryptococcus is critical for development of vaccines and immunotherapies to combat cryptococcosis. Consequently, this review focuses on our current knowledge of protective immune responses to C. neoformans, with an emphasis on innate immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J.E. and Sutherland, T.E. 2014. Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin. Semin. Immunol. 26, 329–340.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alvarez, M. and Casadevall, A. 2006. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16, 2161–2165.

    Article  PubMed  CAS  Google Scholar 

  • Andama, A.O., den Boon, S., Meya, D., Cattamanchi, A., Worodria, W., Davis, J.L., Walter, N.D., Yoo, S.D., Kalema, N., Haller, B., et al. 2013. Prevalence and outcomes of cryptococcal antigenemia in HIV-seropositive patients hospitalized for suspected tuberculosis in Uganda. J. Acquir. Immune. Defic. Syndr. 63, 189–194.

    Article  PubMed Central  PubMed  Google Scholar 

  • Aratani, Y., Kura, F., Watanabe, H., Akagawa, H., Takano, Y., Ishida-Okawara, A., Suzuki, K., Maeda, N., and Koyama, H. 2006. Contribution of the myeloperoxidase-dependent oxidative system to host defence against Cryptococcus neoformans. J. Med. Microbiol. 55, 1291–1299.

    Article  PubMed  CAS  Google Scholar 

  • Arora, S., Hernandez, Y., Erb-Downward, J.R., McDonald, R.A., Toews, G.B., and Huffnagle, G.B. 2005. Role of IFN-gamma in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. J. Immunol. 174, 6346–6356.

    Article  PubMed  CAS  Google Scholar 

  • Arora, S., Olszewski, M.A., Tsang, T.M., McDonald, R.A., Toews, G.B., and Huffnagle, G.B. 2011. Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with Cryptococcus neoformans. Infect. Immun. 79, 1915–1926.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baddley, J.W., Perfect, J.R., Oster, R.A., Larsen, R.A., Pankey, G.A., Henderson, H., Haas, D.W., Kauffman, C.A., Patel, R., Zaas, A.K., et al. 2008. Pulmonary cryptococcosis in patients without HIV infection: factors associated with disseminated disease. Eur. J. Clin. Microbiol. Infect. Dis. 27, 937–943.

    Article  PubMed  CAS  Google Scholar 

  • Bauman, S.K., Nichols, K.L., and Murphy, J.W. 2000. Dendritic cells in the induction of protective and nonprotective anticryptococcal cell-mediated immune responses. J. Immunol. 165, 158–167.

    Article  PubMed  CAS  Google Scholar 

  • Brena, S., Cabezas-Olcoz, J., Moragues, M.D., Fernandez de Larrinoa, I., Dominguez, A., Quindos, G., and Ponton, J. 2011. Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans. Antimicrob. Agents Chemother. 55, 3156–3163.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Casadevall, A. 1995. Antibody immunity and invasive fungal infections. Infect. Immun. 63, 4211–4218.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Casadevall, A. and Pirofski, L.A. 2007. Antibody-mediated protection through cross-reactivity introduces a fungal heresy into immunological dogma. Infect. Immun. 75, 5074–5078.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Charlier, C., Nielsen, K., Daou, S., Brigitte, M., Chretien, F., and Dromer, F. 2009. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect. Immun. 77, 120–127.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chaturvedi, V., Flynn, T., Niehaus, W.G., and Wong, B. 1996. Stress tolerance and pathogenic potential of a mannitol mutant of Cryptococcus neoformans. Microbiology 142 Pt 4), 937–943.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Varma, A., Diaz, M.R., Litvintseva, A.P., Wollenberg, K.K., and Kwon-Chung, K.J. 2008. Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg. Infect. Dis. 14, 755–762.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choi, K.H., Park, S.J., Min, K.H., Kim, S.R., Lee, M.H., Chung, C.R., Han, H.J., and Lee, Y.C. 2011. Treatment of asymptomatic pulmonary cryptococcosis in immunocompetent hosts with oral fluconazole. Scand. J. Infect. Dis. 43, 380–385.

    Article  PubMed  CAS  Google Scholar 

  • Coenjaerts, F.E., Walenkamp, A.M., Mwinzi, P.N., Scharringa, J., Dekker, H.A., van Strijp, J.A., Cherniak, R., and Hoepelman, A.I. 2001. Potent inhibition of neutrophil migration by cryptococcal mannoprotein-4-induced desensitization. J. Immunol. 167, 3988–3995.

    Article  PubMed  CAS  Google Scholar 

  • Dan, J.M., Kelly, R.M., Lee, C.K., and Levitz, S.M. 2008a. Role of the mannose receptor in a murine model of Cryptococcus neoformans infection. Infect. Immun. 76, 2362–2367.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dan, J.M., Wang, J.P., Lee, C.K., and Levitz, S.M. 2008b. Cooperative stimulation of dendritic cells by Cryptococcus neoformans mannoproteins and CpG oligodeoxynucleotides. PLoS One 3, e2046.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davis, M.J., Tsang, T.M., Qiu, Y., Dayrit, J.K., Freij, J.B., Huffnagle, G.B., and Olszewski, M.A. 2013. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. mBio 4, e00264–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ellerbroek, P.M., Lefeber, D.J., van Veghel, R., Scharringa, J., Brouwer, E., Gerwig, G.J., Janbon, G., Hoepelman, A.I., and Coenjaerts, F.E. 2004. O-acetylation of cryptococcal capsular glucuronoxylomannan is essential for interference with neutrophil migration. J. Immunol. 173, 7513–7520.

    Article  PubMed  CAS  Google Scholar 

  • Feldmesser, M., Casadevall, A., Kress, Y., Spira, G., and Orlofsky, A. 1997. Eosinophil-Cryptococcus neoformans interactions in vivo and in vitro. Infect. Immun. 65, 1899–1907.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Garro, A.P., Chiapello, L.S., Baronetti, J.L., and Masih, D.T. 2011a. Eosinophils elicit proliferation of naive and fungal-specific cells in vivo so enhancing a T helper type 1 cytokine profile in favour of a protective immune response against Cryptococcus neoformans infection. Immunology 134, 198–213.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garro, A.P., Chiapello, L.S., Baronetti, J.L., and Masih, D.T. 2011b. Rat eosinophils stimulate the expansion of Cryptococcus neoformans- specific CD4+ and CD8+ T cells with a T-helper 1 profile. Immunology 132, 174–187.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gedik, H., Simsek, F., Kanturk, A., Yildirmak, T., Arica, D., Aydin, D., Demirel, N., and Yokus, O. 2014. Bloodstream infections in patients with hematological malignancies: which is more fatal - cancer or resistant pathogens? Ther. Clin. Risk Manag. 10, 743–752.

    Article  PubMed Central  PubMed  Google Scholar 

  • Grahnert, A., Richter, T., Piehler, D., Eschke, M., Schulze, B., Muller, U., Protschka, M., Kohler, G., Sabat, R., Brombacher, F., et al. 2014. IL-4 receptor-alpha-dependent control of Cryptococcus neoformans in the early phase of pulmonary infection. PLoS One 9, e87341.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grijpstra, J., Tefsen, B., van Die, I., and de Cock, H. 2009. The Cryptococcus neoformans cap10 and cap59 mutant strains, affected in glucuronoxylomannan synthesis, differentially activate human dendritic cells. FEMS Immunol. Med. Microbiol. 57, 142–150.

    Article  PubMed  CAS  Google Scholar 

  • Hardison, S.E., Herrera, G., Young, M.L., Hole, C.R., Wozniak, K.L., and Wormley, F.L.Jr. 2012. Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation. J. Immunol. 189, 4060–4068.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hardison, S.E., Ravi, S., Wozniak, K.L., Young, M.L., Olszewski, M.A., and Wormley, F.L.Jr. 2010a. Pulmonary infection with an interferon- gamma-producing Cryptococcus neoformans strain results in classical macrophage activation and protection. Am. J. Pathol. 176, 774–785.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hardison, S.E., Wozniak, K.L., Kolls, J.K., and Wormley, F.L.Jr. 2010b. Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection. Infect. Immun. 78, 5341–5351.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hole, C.R., Bui, H., Wormley, F.L.Jr., and Wozniak, K.L. 2012. Mechanisms of dendritic cell lysosomal killing of Cryptococcus. Sci. Rep. 2, 739.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Holmer, S.M., Evans, K.S., Asfaw, Y.G., Saini, D., Schell, W.A., Ledford, J.G., Frothingham, R., Wright, J.R., Sempowski, G.D., and Perfect, J.R. 2014. Impact of surfactant protein D, interleukin- 5, and eosinophilia on Cryptococcosis. Infect. Immun. 82, 683–693.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huffnagle, G.B., Boyd, M.B., Street, N.E., and Lipscomb, M.F. 1998. IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J. Immunol. 160, 2393–2400.

    PubMed  CAS  Google Scholar 

  • Huffnagle, G.B., Lipscomb, M.F., Lovchik, J.A., Hoag, K.A., and Street, N.E. 1994. The role of CD4+ and CD8+ T-cells in the protective inflammatory response to a pulmonary cryptococcal infection. J. Leukoc. Biol. 55, 35–42.

    PubMed  CAS  Google Scholar 

  • Huffnagle, G.B., Yates, J.L., and Lipscomb, M.F. 1991. T-cell-mediated immunity in the lung - a Cryptococcus neoformans pulmonary infection model using SCID and athymic nude-mice. Infect. Immun. 59, 1423–1433.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Humphreys, I.R., Edwards, L., Walzl, G., Rae, A.J., Dougan, G., Hill, S., and Hussell, T. 2003. OX40 ligation on activated T cells enhances the control of Cryptococcus neoformans and reduces pulmonary eosinophilia. J. Immunol. 170, 6125–6132.

    Article  PubMed  CAS  Google Scholar 

  • Husain, S., Wagener, M.M., and Singh, N. 2001. Cryptococcus neoformans infection in organ transplant recipients: variables influencing clinical characteristics and outcome. Emerg. Infect. Dis. 7, 375–381.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jain, A.V., Zhang, Y., Fields, W.B., McNamara, D.A., Choe, M.Y., Chen, G.H., Erb-Downward, J., Osterholzer, J.J., Toews, G.B., Huffnagle, G.B., et al. 2009. Th2 but not Th1 immune bias results in altered lung functions in a murine model of pulmonary Cryptococcus neoformans infection. Infect. Immun. 77, 5389–5399.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jarvis, J.N., Bicanic, T., Loyse, A., Namarika, D., Jackson, A., Nussbaum, J.C., Longley, N., Muzoora, C., Phulusa, J., Taseera, K., et al. 2014. Determinants of mortality in a combined cohort of 501 patients with HIV-associated Cryptococcal meningitis: implications for improving outcomes. Clin. Infect. Dis. 58, 736–745.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones, G.J., Wiseman, J.C., Marr, K.J., Wei, S., Djeu, J.Y., and Mody, C.H. 2009. In contrast to anti-tumor activity, YT cell and primary NK cell cytotoxicity for Cryptococcus neoformans bypasses LFA-1. Int. Immunol. 21, 423–432.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, R.M., Chen, J.M., Yauch, L.E., and Levitz, S.M. 2005. Opsonic requirements for dendritic cell-mediated responses to Cryptococcus neoformans. Infect. Immun. 73, 592–598.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kleinnijenhuis, J., Quintin, J., Preijers, F., Joosten, L.A., Ifrim, D.C., Saeed, S., Jacobs, C., van Loenhout, J., de Jong, D., Stunnenberg, H.G., et al. 2012. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. USA 109, 17537–17542.

    Article  Google Scholar 

  • Kleinschek, M.A., Muller, U., Schutze, N., Sabat, R., Straubinger, R.K., Blumenschein, W.M., McClanahan, T., Kastelein, R.A., and Alber, G. 2010. Administration of IL-23 engages innate and adaptive immune mechanisms during fungal infection. Int. Immunol. 22, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Kosmidis, C. and Denning, D.W. 2015. The clinical spectrum of pulmonary aspergillosis. Thorax 70, 270–277.

    Article  PubMed  Google Scholar 

  • Kramer, P.A., Ravi, S., Chacko, B., Johnson, M.S., and Darley-Usmar, V.M. 2014. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol. 2, 206–210.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leopold Wager, C.M., Hole, C.R., Wozniak, K.L., Olszewski, M.A., Mueller, M., and Wormley, F.L.Jr. 2015. STAT1 signaling within macrophages is required for anti-fungal activity against Cryptococcus neoformans. Infect. Immun. 83, 4513–4527.

    PubMed  Google Scholar 

  • Leopold Wager, C.M., Hole, C.R., Wozniak, K.L., Olszewski, M.A., and Wormley, F.L.Jr. 2014. STAT1 Signaling is essential for protection against Cryptococcus neoformans infection in mice. J. Immunol. 193, 4060–4071.

    Article  PubMed  CAS  Google Scholar 

  • Leopold Wager, C.M. and Wormley, F.L. 2014. Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunol. 7, 1023–1035.

    Article  PubMed  CAS  Google Scholar 

  • Levitz, S.M. 1991. The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. Rev. Infect. Dis. 13, 1163–1169.

    Article  PubMed  CAS  Google Scholar 

  • Li, S.S., Kyei, S.K., Timm-McCann, M., Ogbomo, H., Jones, G.J., Shi, M., Xiang, R.F., Oykhman, P., Huston, S.M., Islam, A., et al. 2013. The NK receptor NKp30 mediates direct fungal recognition and killing and is diminished in NK cells from HIV-infected patients. Cell Host Microbe 14, 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Loschi, M., Thill, C., Gray, C., David, M., Bagatha, M.F., Chamseddine, A., Contentin, N., Jardin, F., Lanic, H., Lemasle, E., et al. 2015. Invasive aspergillosis in neutropenic patients during hospital renovation: effectiveness of mechanical preventive measures in a prospective cohort of 438 patients. Mycopathologia 179, 337–345.

    Article  PubMed  Google Scholar 

  • Lupo, P., Chang, Y.C., Kelsall, B.L., Farber, J.M., Pietrella, D., Vecchiarelli, A., Leon, F., and Kwon-Chung, K.J. 2008. The presence of capsule in Cryptococcus neoformans influences the gene expression profile in dendritic cells during interaction with the fungus. Infect. Immun. 76, 1581–1589.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ma, L.L., Wang, C.L., Neely, G.G., Epelman, S., Krensky, A.M., and Mody, C.H. 2004. NK cells use perforin rather than granulysin for anticryptococcal activity. J. Immunol. 173, 3357–3365.

    Article  PubMed  CAS  Google Scholar 

  • Mambula, S.S., Simons, E.R., Hastey, R., Selsted, M.E., and Levitz, S.M. 2000. Human neutrophil-mediated nonoxidative antifungal activity against Cryptococcus neoformans. Infect. Immun. 68, 6257–6264.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mansour, M.K., Latz, E., and Levitz, S.M. 2006. Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J. Immunol. 176, 3053–3061.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, M.K., Schlesinger, L.S., and Levitz, S.M. 2002. Optimal T cell responses to Cryptococcus neoformans mannoprotein are dependent on recognition of conjugated carbohydrates by mannose receptors. J. Immunol. 168, 2872–2879.

    Article  PubMed  CAS  Google Scholar 

  • Marr, K.J., Jones, G.J., Zheng, C., Huston, S.M., Timm-McCann, M., Islam, A., Berenger, B.M., Ma, L.L., Wiseman, J.C., and Mody, C.H. 2009. Cryptococcus neoformans directly stimulates perforin production and rearms NK cells for enhanced anticryptococcal microbicidal activity. Infect. Immun. 77, 2436–2446.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martinez, L.R. and Casadevall, A. 2005. Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect. Immun. 73, 6350–6362.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McClelland, E.E., Nicola, A.M., Prados-Rosales, R., and Casadevall, A. 2010. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J. Clin. Invest. 120, 1355–1361.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McNeill, E., Crabtree, M.J., Sahgal, N., Patel, J., Chuaiphichai, S., Iqbal, A.J., Hale, A.B., Greaves, D.R., and Channon, K.M. 2015. Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radic. Biol. Med. 79, 206–216.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mednick, A.J., Feldmesser, M., Rivera, J., and Casadevall, A. 2003. Neutropenia alters lung cytokine production in mice and reduces their susceptibility to pulmonary cryptococcosis. Eur. J. Immunol. 33, 1744–1753.

    Article  PubMed  CAS  Google Scholar 

  • Milam, J.E., Herring-Palmer, A.C., Pandrangi, R., McDonald, R.A., Huffnagle, G.B., and Toews, G.B. 2007. Modulation of the pulmonary type 2 T-cell response to Cryptococcus neoformans by intratracheal delivery of a tumor necrosis factor alpha-expressing adenoviral vector. Infect. Immun. 75, 4951–4958.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mitchell, T.G. and Perfect, J.R. 1995. Cryptococcosis in the Era of AIDS - 100 years after the discovery of Cryptococcus neoformans. Clin. Microbiol. Rev. 8, 515–548.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Muller, U., Stenzel, W., Kohler, G., Werner, C., Polte, T., Hansen, G., Schutze, N., Straubinger, R.K., Blessing, M., McKenzie, A.N., et al. 2007. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J. Immunol. 179, 5367–5377.

    Article  PubMed  Google Scholar 

  • Murdock, B.J., Huffnagle, G.B., Olszewski, M.A., and Osterholzer, J.J. 2014. Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Infect. Immun. 82, 937–948.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murphy, J.W. 1998. Protective cell-mediated immunity against Cryptococcus neoformans. Res. Immunol. 149, 373–386.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, K., Miyazato, A., Xiao, G., Hatta, M., Inden, K., Aoyagi, T., Shiratori, K., Takeda, K., Akira, S., Saijo, S., et al. 2008. Deoxynucleic acids from Cryptococcus neoformans activate myeloid dendritic cells via a TLR9-dependent pathway. J. Immunol. 180, 4067–4074.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, Y., Sato, K., Yamamoto, H., Matsumura, K., Matsumoto, I., Nomura, T., Miyasaka, T., Ishii, K., Kanno, E., Tachi, M., et al. 2015. Dectin-2 deficiency promotes Th2 response and mucin production in the lungs after pulmonary infection with Cryptococcus neoformans. Infect. Immun. 83, 671–681.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Netea, M.G., Quintin, J., and van der Meer, J.W. 2011. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Nicola, A.M., Robertson, E.J., Albuquerque, P., Derengowski Lda, S., and Casadevall, A. 2011. Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH. mBio 2, e00167–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olszewski, M.A., Huffnagle, G.B., Traynor, T.R., McDonald, R.A., Cook, D.N., and Toews, G.B. 2001. Regulatory effects of macrophage inflammatory protein 1alpha/CCL3 on the development of immunity to Cryptococcus neoformans depend on expression of early inflammatory cytokines. Infect. Immun. 69, 6256–6263.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Onishi, R.M. and Gaffen, S.L. 2010. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129, 311–321.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Osterholzer, J.J., Chen, G.H., Olszewski, M.A., Curtis, J.L., Huffnagle, G.B., and Toews, G.B. 2009a. Accumulation of CD11b+ lung dendritic cells in response to fungal infection results from the CCR2-mediated recruitment and differentiation of Ly-6Chigh monocytes. J. Immunol. 183, 8044–8053.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Osterholzer, J.J., Curtis, J.L., Polak, T., Ames, T., Chen, G.H., Mc- Donald, R., Huffnagle, G.B., and Toews, G.B. 2008. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J. Immunol. 181, 610–620.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Osterholzer, J.J., Milam, J.E., Chen, G.H., Toews, G.B., Huffnagle, G.B., and Olszewski, M.A. 2009b. Role of dendritic cells and alveolar macrophages in regulating early host defense against pulmonary infection with Cryptococcus neoformans. Infect. Immun. 77, 3749–3758.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Osterholzer, J.J., Surana, R., Milam, J.E., Montano, G.T., Chen, G.H., Sonstein, J., Curtis, J.L., Huffnagle, G.B., Toews, G.B., and Olszewski, M.A. 2009c. Cryptococcal urease promotes the accumulation of immature dendritic cells and a non-protective T2 immune response within the lung. Am. J. Pathol. 174, 932–943.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oykhman, P., Timm-McCann, M., Xiang, R.F., Islam, A., Li, S.S., Stack, D., Huston, S.M., Ma, L.L., and Mody, C.H. 2013. Requirement and redundancy of the Src family kinases Fyn and Lyn in perforin-dependent killing of Cryptococcus neoformans by NK cells. Infect. Immun. 81, 3912–3922.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oz, Y., Aslan, M., Aksit, F., Metintas, S., and Gunduz, E. 2015. The effect of clinical characteristics on the performance of galactomannan and PCR for the diagnosis of invasive aspergillosis in febrile neutropenic patients. Mycoses 59, 86–92.

    Article  PubMed  CAS  Google Scholar 

  • Panackal, A.A., Wuest, S.C., Lin, Y.C., Wu, T., Zhang, N., Kosa, P., Komori, M., Blake, A., Browne, S.K., Rosen, L.B., et al. 2015. Paradoxical immune responses in non-HIV Cryptococcal meningitis. PLoS Pathog. 11, e1004884.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pappas, P.G., Alexander, B.D., Andes, D.R., Hadley, S., Kauffman, C.A., Freifeld, A., Anaissie, E.J., Brumble, L.M., Herwaldt, L., Ito, J., et al. 2010. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin. Infect. Dis. 50, 1101–1111.

    Article  PubMed  Google Scholar 

  • Park, B.J., Wannemuehler, K.A., Marston, B.J., Govender, N., Pappas, P.G., and Chiller, T.M. 2009. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23, 525–530.

    Article  PubMed  Google Scholar 

  • Piehler, D., Stenzel, W., Grahnert, A., Held, J., Richter, L., Kohler, G., Richter, T., Eschke, M., Alber, G., and Muller, U. 2011. Eosinophils contribute to IL-4 production and shape the T-helper cytokine profile and inflammatory response in pulmonary cryptococcosis. Am. J. Pathol. 179, 733–744.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pietrella, D., Corbucci, C., Perito, S., Bistoni, G., and Vecchiarelli, A. 2005. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation. Infect. Immun. 73, 820–827.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Powderly, W.G. 1993. Cryptococcal meningitis and AIDS. Clin. Infect. Dis. 17, 837–842.

    Article  PubMed  CAS  Google Scholar 

  • Pyrgos, V., Seitz, A.E., Steiner, C.A., Prevots, D.R., and Williamson, P.R. 2013. Epidemiology of cryptococcal meningitis in the US: 1997-2009. PLoS One 8, e56269.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qiu, Y., Zeltzer, S., Zhang, Y., Wang, F., Chen, G.H., Dayrit, J., Murdock, B.J., Bhan, U., Toews, G.B., Osterholzer, J.J., et al. 2012. Early induction of CCL7 downstream of TLR9 signaling promotes the development of robust immunity to cryptococcal infection. J. Immunol. 188, 3940–3948.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Quintin, J., Saeed, S., Martens, J.H., Giamarellos-Bourboulis, E.J., Ifrim, D.C., Logie, C., Jacobs, L., Jansen, T., Kullberg, B.J., Wijmenga, C., et al. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi, A., Grey, A., Rose, K.L., Schey, K.L., and Del Poeta, M. 2011. Cryptococcus neoformans modulates extracellular killing by neutrophils. Front. Microbiol. 2, 193.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rocha, J.D., Nascimento, M.T., Decote-Ricardo, D., Corte-Real, S., Morrot, A., Heise, N., Nunes, M.P., Previato, J.O., Mendonca-Previato, L., DosReis, G.A., et al. 2015. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils. Sci. Rep. 5, 8008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rohatgi, S. and Pirofski, L.A. 2012. Molecular characterization of the early B cell response to pulmonary Cryptococcus neoformans infection. J. Immunol. 189, 5820–5830.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ruckerl, D. and Allen, J.E. 2014. Macrophage proliferation, provenance, and plasticity in macroparasite infection. Immunol. Rev. 262, 113–133.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saag, M.S., Graybill, R.J., Larsen, R.A., Pappas, P.G., Perfect, J.R., Powderly, W.G., Sobel, J.D., and Dismukes, W.E. 2000. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin. Infect. Dis. 30, 710–718.

    Article  PubMed  CAS  Google Scholar 

  • Sorrell, T.C., Juillard, P.G., Djordjevic, J.T., Kaufman-Francis, K., Dietmann, A., Milonig, A., Combes, V., and Grau, G.E. 2015. Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265. Microbes Infect. 18, 57–67.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam, K., Metzger, B., Hanau, L.H., Guh, A., Rucker, L., Badri, S., and Pirofski, L.A. 2009. IgM(+) memory B cell expression predicts HIV-associated cryptococcosis status. J. Infect. Dis. 200, 244–251.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Subramaniam, K.S., Datta, K., Quintero, E., Manix, C., Marks, M.S., and Pirofski, L.A. 2010. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with Cryptococcus neoformans. J. Immunol. 184, 5755–5767.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun, J.C., Beilke, J.N., and Lanier, L.L. 2009. Adaptive immune features of natural killer cells. Nature 457, 557–561.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun, D., Zhang, M., Liu, G., Wu, H., Zhu, X., Zhou, H., and Shi, M. 2015. Real-time imaging of interactions of neutrophils with Cryptococcus neoformans: a crucial role of C5a-C5aR signaling. Infect. Immun. DOI: 10.1128/IAI.01197-15.

    Google Scholar 

  • Syme, R.M., Spurrell, J.C., Amankwah, E.K., Green, F.H., and Mody, C.H. 2002. Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcgamma receptor II for presentation to T lymphocytes. Infect. Immun. 70, 5972–5981.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szymczak, W.A., Davis, M.J., Lundy, S.K., Dufaud, C., Olszewski, M., and Pirofski, L.A. 2013. X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans infection. mBio 4, e00265–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tanaka, M., Ishii, K., Nakamura, Y., Miyazato, A., Maki, A., Abe, Y., Miyasaka, T., Yamamoto, H., Akahori, Y., Fue, M., et al. 2012. Toll-like receptor 9-dependent activation of bone marrow-derived dendritic cells by URA5 DNA from Cryptococcus neoformans. Infect. Immun. 80, 778–786.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van der Horst, C.M., Saag, M.S., Cloud, G.A., Hamill, R.J., Graybill, J.R., Sobel, J.D., Johnson, P.C., Tuazon, C.U., Kerkering, T., Moskovitz, B.L., et al. 1997. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. N Engl. J. Med. 337, 15–21.

    Article  PubMed  Google Scholar 

  • Vecchiarelli, A., Pietrella, D., Lupo, P., Bistoni, F., McFadden, D.C., and Casadevall, A. 2003. The polysaccharide capsule of Cryptococcus neoformans interferes with human dendritic cell maturation and activation. J. Leukoc. Biol. 74, 370–378.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, T.J. and Gamaletsou, M.N. 2013. Treatment of fungal disease in the setting of neutropenia. Hematology Am. Soc. Hematol. Educ. Program. 2013, 423–427.

    Article  PubMed  Google Scholar 

  • Wiesner, D.L., Specht, C.A., Lee, C.K., Smith, K.D., Mukaremera, L., Lee, S.T., Lee, C.G., Elias, J.A., Nielsen, J.N., Boulware, D.R., et al. 2015. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 11, e1004701.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wiseman, J.C., Ma, L.L., Marr, K.J., Jones, G.J., and Mody, C.H. 2007. Perforin-dependent cryptococcal microbicidal activity in NK cells requires PI3K-dependent ERK1/2 signaling. J. Immunol. 178, 6456–6464.

    Article  PubMed  CAS  Google Scholar 

  • Wozniak, K.L., Hardison, S.E., Kolls, J.K., and Wormley, F.L. 2011. Role of IL-17A on resolution of pulmonary C. neoformans infection. PLoS One 6, e17204.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wozniak, K.L., Kolls, J.K., and Wormley, F.L.Jr. 2012. Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by gammadelta T cells. BMC Immunol. 13, 65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wozniak, K.L. and Levitz, S.M. 2008. Cryptococcus neoformans enters the endolysosomal pathway of dendritic cells and is killed by lysosomal components. Infect. Immun. 76, 4764–4771.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wozniak, K.L., Ravi, S., Macias, S., Young, M.L., Olszewski, M.A., Steele, C., and Wormley, F.L. 2009. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis. PLoS One 4, e6854.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wozniak, K.L., Vyas, J.M., and Levitz, S.M. 2006. In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis. Infect. Immun. 74, 3817–3824.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu, B., Liu, H., Huang, J., Zhang, W., and Zhang, T. 2009. Pulmonary cryptococcosis in non-AIDS patients. Clin. Invest. Med. 32, E70–77.

    PubMed  Google Scholar 

  • Yamaguchi, H., Komase, Y., Ikehara, M., Yamamoto, T., and Shinagawa, T. 2008. Disseminated cryptococcal infection with eosinophilia in a healthy person. J. Infect. Chemother. 14, 319–324.

    Article  PubMed  Google Scholar 

  • Yamamoto, H., Abe, Y., Miyazato, A., Tanno, D., Tanaka, M., Miyasaka, T., Ishii, K., and Kawakami, K. 2011. Cryptococcus neoformans suppresses the activation of bone marrow-derived dendritic cells stimulated with its own DNA, but not with DNA from other fungi. FEMS Immunol. Med. Microbiol. 63, 363–372.

    Article  PubMed  CAS  Google Scholar 

  • Yauch, L.E., Lam, J.S., and Levitz, S.M. 2006. Direct inhibition of T-cell responses by the Cryptococcus capsular polysaccharide glucuronoxylomannan. PLoS Pathog. 2, e120.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zaragoza, O., Rodrigues, M.L., De Jesus, M., Frases, S., Dadachova, E., and Casadevall, A. 2009. The capsule of the fungal pathogen Cryptococcus neoformans. Adv. Appl. Microbiol. 68, 133–216.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang, Y., Wang, F., Tompkins, K.C., McNamara, A., Jain, A.V., Moore, B.B., Toews, G.B., Huffnagle, G.B., and Olszewski, M.A. 2009. Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. Am. J. Pathol. 175, 2489–2500.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floyd L. Wormley Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hole, C., Wormley, F.L. Innate host defenses against Cryptococcus neoformans . J Microbiol. 54, 202–211 (2016). https://doi.org/10.1007/s12275-016-5625-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-5625-7

Keywords

Navigation