Skip to main content
Log in

Characterization of MocR, a GntR-like transcriptional regulator, in Bradyrhizobium japonicum: its impact on motility, biofilm formation, and soybean nodulation

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bradyrhizobium japonicum is a Gram-negative soil bacterium that can fix nitrogen into ammonia by developing a symbiotic relationship with the soybean plant. MocR proteins make up a subfamily of GntR superfamily, one of the most widely distributed and prolific groups of the helix-turn-helix transcription factors. In this study, we constructed a mutant strain for mocR (blr6977) to investigate its role in cellular processes and symbiosis in B. japonicum. Although growth rate and morphology of the mutant were indistinguishable from those of the wild type, the mutant showed significant differences in motility and attachment (i.e., biofilm formation) from the wild type. The mutant displayed a decrease in biofilm formation, but was more motile than the wild type. The inactivation of mocR did not affect the number of nodules on soybean roots, but caused delayed nodulation. Delayed nodulation intrigued us to study competitiveness of the mutant infecting soybeans. The mutant was less competitive than the wild type, indicating that delayed nodulation might be due to competitiveness. Gene expressions of other MocR subfamily members were also compared between the wild type and mutant strains. None of the mocR-like genes examined in this study were differentially expressed between both strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, P. and Bergman, K. 1981. Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J. Bacteriol. 148, 728–908.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballering, K.S., Kristich, C.J., Grindle, S.M., Oromendia, A., Beattie, D.T., and Dunny, G.M. 2009. Functional genomics of Enterococcus faecalis: multiple novel genetic determinants for biofilm formation in the core genome. J. Bacteriol. 191, 2806–2814.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belitsky, B.R. 2004. Bacillus subtilis GabR, a protein with DNA-binding and aminotransferase domains, is a PLP-dependent transcriptional regulator. J. Mol. Biol. 340, 655–664.

    Article  CAS  PubMed  Google Scholar 

  • Bittner, M., Butow, R., DeRisi, J., Diehn, M., Eberwine, J., Epstein, C.B., Glynne, R., Grimmond, S., Ideker, T., Kacharmina, J.E., et al. 2003. Expression analysis of RNA. pp. 101–288. In Bowtell, D. and Sambrook, J. (eds.), DNA Microarrays: A Molecular Cloning Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

  • Bogino, P.C., Oliva Mde, L., Sorroche, F.G., and Giordano, W. 2013. The role of bacterial biofilms and surface components in plantbacterial associations. Int. J. Mol. Sci. 14, 15838–15859.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bramucci, E., Milano, T., and Pascarella, S. 2011. Genomic distribution and heterogeneity of MocR-like transcriptional factors containing a domain belonging to the superfamily of the pyridoxal-5′-phosphate dependent enzymes of fold type I. Biochem. Biophys. Res. Commun. 415, 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Broughton, W.J. and Dilworth, M.J. 1971. Control of leghaemoglobin synthesis in snake beans. Biochem. J. 125, 1075–1080.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caetano-Anolles, G., Wall, L.G., De Micheli, A.T., Macchi, E.M., Bauer, W.D., and Favelukes, G. 1988. Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol. 86, 1228–1235.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caiazza, N.C., Merritt, J.H., Brothers, K.M., and O’Toole, G.A. 2007. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189, 3603–3612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang, W.S., Franck, W.L., Cytryn, E., Jeong, S., Joshi, T., Emerich, D.W., Sadowsky, M.J., Xu, D., and Stacey, G. 2007. An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. Mol. Plant-Microbe Interact. 20, 1298–1307.

    Article  CAS  PubMed  Google Scholar 

  • Franck, W.L., Chang, W.S., Qiu, J., Sugawara, M., Sadowsky, M.J., Smith, S.A., and Stacey, G. 2008. Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth. J. Bacteriol. 190, 6697–6705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita, Y. and Fujita, T. 1987. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc. Nat. Acad. Sci. USA 84, 4524–4528.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Göttfert, M., Holzhauser, D., Bani, D., and Hennecke, H. 1992. Structural and functional analysis of two different nodD genes in Bradyrhizobium japonicum USDA110. Mol. Plant-Microbe Interact. 5, 257–265.

    Article  PubMed  Google Scholar 

  • Haine, V., Sinon, A., Van Steen, F., Rousseau, S., Dozot, M., Lestrate, P., Lambert, C., Letesson, J.J., and De Bolle, X. 2005. Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect. Immun. 73, 5578–5586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hillerich, B. and Westpheling, J. 2006. A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J. Bacteriol. 188, 7477–7487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoskisson, P.A. and Rigali, S. 2009. Chapter 1: Variation in form and function the helix-turn-helix regulators of the GntR superfamily. Adv. Appl. Microbiol. 69, 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Jaques, S. and McCarter, L.L. 2006. Three new regulators of swarming in Vibrio parahaemolyticus. J. Bacteriol. 188, 2625–2635.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jochmann, N., Gotker, S., and Tauch, A. 2011. Positive transcriptional control of the pyridoxal phosphate biosynthesis genes pdxST by the MocR-type regulator PdxR of Corynebacterium glutamicum ATCC 13032. Microbiology 157, 77–88.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko, T., Nakamura, Y., Sato, S., Minamisawa, K., Uchiumi, T., Sasamoto, S., Watanabe, A., Idesawa, K., Iriguchi, M., Kawashima, K., et al. 2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res. 9, 189–197.

    Article  PubMed  Google Scholar 

  • Kovach, M.E., Phillips, R.W., Elzer, P.H., Roop, R.M., 2nd, and Peterson, K.M. 1994. pBBR1MCS: a broad-host-range cloning vector. BioTechniques 16, 800–802.

    CAS  PubMed  Google Scholar 

  • Lee, H.I., In, Y.H., Jeong, S.Y., Jeon, J.M., Noh, J.G., So, J.S., and Chang, W.S. 2014. Inactivation of the lpcC gene alters surfacerelated properties and symbiotic capability of Bradyrhizobium japonicum. Lett. Appl. Microbiol. 59, 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.W., Jeong, S.Y., In, Y.H., Kim, K.Y., So, J.S., and Chang, W.S. 2010. Lack of O-polysaccharide enhances biofilm formation by Bradyrhizobium japonicum. Lett. Appl. Microbiol. 50, 452–456.

    Article  PubMed  Google Scholar 

  • Lee, H.I., Lee, J.H., Park, K.H., Sangurdekar, D., and Chang, W.S. 2012. Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile. Appl. Environ. Microbiol. 78, 2896–2903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leong, S.A., Ditta, G.S., and Helinski, D.R. 1982. Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for deltaaminolevulinic acid synthetase from Rhizobium meliloti. J. Biol. Chem. 257, 8724–8730.

    CAS  PubMed  Google Scholar 

  • Liao, S., Bitoun, J.P., Nguyen, A.H., Bozner, D., Yao, X., and Wen, Z.T. 2015. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation. Mol. Oral Microbiol. 30, 255–268.

    Article  CAS  PubMed  Google Scholar 

  • Loh, J.T., Yuen-Tsai, J.P., Stacey, M.G., Lohar, D., Welborn, A., and Stacey, G. 2001. Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes. Mol. Microbiol. 42, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Lord, D.M., Uzgoren Baran, A., Soo, V.W., Wood, T.K., Peti, W., and Page, R. 2014. McbR/YncC: implications for the mechanism of ligand and DNA binding by a bacterial GntR transcriptional regulator involved in biofilm formation. Biochemistry 53, 7223–7231.

    Article  CAS  PubMed  Google Scholar 

  • Merritt, J.H., Brothers, K.M., Kuchma, S.L., and O’Toole, G.A. 2007. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J. Bacteriol. 189, 8154–8164.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rigali, S., Derouaux, A., Giannotta, F., and Dusart, J. 2002. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J. Biol. Chem. 277, 12507–12515.

    Article  CAS  PubMed  Google Scholar 

  • Rossbach, S., Kulpa, D.A., Rossbach, U., and de Bruijn, F.J. 1994. Molecular and genetic characterization of the rhizopine catabolism (mocABRC) genes of Rhizobium meliloti L5-30. Mol. Gen. Genet. 245, 11–24.

    Article  CAS  PubMed  Google Scholar 

  • Sadowsky, M.J., Cregan, P.B., Gottfert, M., Sharma, A., Gerhold, D., Rodriguez-Quinones, F., Keyser, H.H., Hennecke, H., and Stacey, G. 1991. The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc. Nat. Acad. Sci. USA 88, 637–641.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sadowsky, M.J., Tully, R.E., Cregan, P.B., and Keyser, H.H. 1987. Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. Appl. Environ. Microbiol. 53, 2624–2630.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., USA.

    Google Scholar 

  • So, J.S., Hodgson, A.L., Haugland, R., Leavitt, M., Banfalvi, Z., Nieuwkoop, A.J., and Stacey, G. 1987. Transposon-induced symbiotic mutants of Bradyrhizobium japonicum: isolation of two gene regions essential for nodulation. Mol. Gen. Genet. 207, 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, Y., Takemoto, N., Ito, T., Teramoto, H., Yukawa, H., and Inui, M. 2014. Genome-wide analysis of the role of global transcriptional regulator GntR1 in Corynebacterium glutamicum. J. Bacteriol. 196, 3249–3258.

    Article  PubMed Central  PubMed  Google Scholar 

  • van Rhijn, P. and Vanderleyden, J. 1995. The Rhizobium-plant symbiosis. Microbiol. Rev. 59, 124–142.

    PubMed Central  PubMed  Google Scholar 

  • Vincent, J.M. 1970. A manual for the practice study of root-nodule bacteria. Blackwell Scientific.

    Google Scholar 

  • Wang, Y., Chen, A.M., Yu, A.Y., Luo, L., Yu, G.Q., Zhu, J.B., and Wang, Y.Z. 2008. The GntR-type regulators gtrA and gtrB affect cell growth and nodulation of Sinorhizobium meliloti. J. Microbiol. 46, 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Wiethaus, J., Schubert, B., Pfander, Y., Narberhaus, F., and Masepohl, B. 2008. The GntR-like regulator TauR activates expression of taurine utilization genes in Rhodobacter capsulatus. J. Bacteriol. 190, 487–493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Windgassen, M., Urban, A., and Jaeger, K.E. 2000. Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 193, 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Yanisch-Perron, C., Vieira, J., and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Suk Chang.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taw, M.N., Lee, HI., Lee, SH. et al. Characterization of MocR, a GntR-like transcriptional regulator, in Bradyrhizobium japonicum: its impact on motility, biofilm formation, and soybean nodulation. J Microbiol. 53, 518–525 (2015). https://doi.org/10.1007/s12275-015-5313-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5313-z

Keywords

Navigation