Skip to main content
Log in

Characterization of recombinant β-glucosidase from Arthrobacter chlorophenolicus and biotransformation of ginsenosides Rb1, Rb2, Rc, and Rd

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The focus of this study was the cloning, expression, and characterization of recombinant ginsenoside hydrolyzing β-glucosidase from Arthrobacter chlorophenolicus with an ultimate objective to more efficiently bio-transform ginsenosides. The gene bglAch, consisting of 1,260 bp (419 amino acid residues) was cloned and the recombinant enzyme, overexpressed in Escherichia coli BL21 (DE3), was characterized. The GST-fused BglAch was purified using GST·Bind agarose resin and characterized. Under optimal conditions (pH 6.0 and 37°C) BglAch hydrolyzed the outer glucose and arabinopyranose moieties of ginsenosides Rb1 and Rb2 at the C20 position of the aglycone into ginsenoside Rd. This was followed by hydrolysis into F2 of the outer glucose moiety of ginsenoside Rd at the C3 position of the aglycone. Additionally, BglAch more slowly transformed Rc to F2 via C-Mc1 (compared to hydrolysis of Rb1 or Rb2). These results indicate that the recombinant BglAch could be useful for the production of ginsenoside F2 for use in the pharmaceutical and cosmetic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akao, T., Kida, H., Kanaoka, M., Hattori, M., and Kobashi, K. 1998. Drug metabolism: intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol. 50, 1155–1160.

    Article  CAS  PubMed  Google Scholar 

  • An, D.S., Cui, C.H., Lee, H.G., Wang, L., Kim, S.C., Lee, S.T., Jin, F., Yu, H., Chin, Y.W., Lee, H.K., Im, W.T., and Kim, S.G. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76, 5827–5836.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Attele, A.S., Wu, J.A., and Yuan, C.S. 1999. Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685–1693.

    Article  CAS  PubMed  Google Scholar 

  • Chi, H. and Ji, G.E. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganism. Biotechnol. Lett. 27, 765–771.

    Article  CAS  PubMed  Google Scholar 

  • Cho, I.H. 2012. Effects of Panax ginseng in neurodegenerative diseases. J. Ginseng Res. 36, 342–353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi, J.R., Hong, S.W., Kim, Y., Jang, S.E., Kim, N.J., Han, M.J., and Kim, D.H. 2011. Metabolic activities of ginseng and its constituents, ginsenoside Rb1 and Rg1, by human intestinal microflora. J. Ginseng. Res. 35, 301–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi, S., Kim, T.W., and Singh, S.V. 2009. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases. Pharm. Res. 26, 2280–2288.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christensen, L.P. 2009. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food. Nutr. Res. 55, 1–99.

    Article  CAS  PubMed  Google Scholar 

  • Chuankhayan, P., Hua, Y., Svasti, J., Sakdarat, S., Sullivan, P.A., and Ketudat Cairns, J.R. 2005. Purification of an isoflavonoid 7-O-beta-apiosyl-glucoside beta-glycosidase and its substrates from Dalbergia nigrescens Kurz. Phytochemistry 66, 1880–1889.

    Article  CAS  PubMed  Google Scholar 

  • Cui, C.H., Kim, S.C., and Im, W.T. 2013a. Characterization of the ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides. Appl. Microbiol. Biotechnol. 97, 649–659.

    Article  CAS  PubMed  Google Scholar 

  • Cui, C.H., Liu, Q.M., Kim, J.K., Sung, B.H., Kim, S.G., Kim, S.C., and Im, W.T. 2013b. Identification and characterization of a Mucilaginibacter sp. strain QM49 β-glucosidase and its use in the production of the pharmaceutically active minor ginsenosides (S)-Rh1 and (S)-Rg2. Appl. Environ. Microbiol. 79, 5788–5798.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hong, H., Cui, C.H., Kim, J.K., Jin, F.X., Kim, S.C., and Im, W.T. 2012. Enzymatic biotransformation of ginsenoside Rb1 and gypenoside XVII into ginsenosides Rd and F2 by recombinant β-glucosidase from Flavobacterium johnsoniae. J. Ginseng Res. 36, 418–424.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaya, M., Ito, J., Kotaka, A., Matsumura, K., Bando, H., Sahara, H., Ogino, C., Shibasaki, S., Kuroda, K., Ueda, M., and et al. 2008. Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Appl. Microbiol. Biotechnol. 79, 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.K., Cui, C.H., Liu, Q., Yoon, M.H., Kim, S.C., and Im, W.T. 2013. Mass production of the ginsenoside Rg3(S) through the combinative use of two glycoside hydrolases. Food Chem. 141, 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.K., Cui, C.H., Yoon, M.H., Kim, S.C., and Im, W.T. 2012. Bioconversion of major ginsenosides Rg1 to minor ginsenoside F1 using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii and enzyme characterization. J. Biotechnol. 161, 294–301.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.J., Lee, C.M., Kim, M.Y., Yeo, Y.S., Yoon, S.H., Kang, H.C., and Koo, B.S. 2007. Screening and characterization of an enzyme with β-glucosidase activity from environmental DNA. J. Microbiol. Biotechnol. 17, 905–912.

    CAS  PubMed  Google Scholar 

  • Lee, J.H., Ahn, J.Y., Shin, T.J., Choi, S.H., Lee, B.H., Hwang, S.H., Kang, J., Kim, H.J., Park, C.W., and Nah, S.Y. 2011. Effects of minor ginsenosides, ginsenoside metabolites, and ginsenoside epimers on the growth of Caenorhabditis elegans. J. Ginseng Res. 35, 375–383.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leung, K.W. and Wong, A.S. 2010. Pharmacology of ginsenosides: a literature review. Chin. Med. 5, 20–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mai, T.T., Moon, J., Song, Y., Viet, P.Q., and Phuc, P.V. 2012. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett. 321, 144–153.

    Article  CAS  PubMed  Google Scholar 

  • Marques, A.R., Coutinho, P.M., Videira, P., Fialho, A.M., and Sa-Correia, I. 2003. Sphingomonas paucimobilis β-glucosidase Bgl 1: a member of a new bacterial subfamily in glycoside hydrolase family 1. Biochem. J. 370, 793–804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noh, K.H. and Oh, D.K. 2009. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable β-glycosidase from Sulfolobus acidocaldarius. Biol. Pharm. Bull. 32, 1830–1835.

    Article  CAS  PubMed  Google Scholar 

  • Noh, K.H., Son, J.W., Kim, H.J., and Oh, D.K. 2009. Ginsenoside compound K production from ginseng root extract by a thermostable β-glycosidase from Sulfolobus solfataricus. Biosci. Biotechnol. Biochem. 73, 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Opassiri, R., Pomthong, B., Onkoksoong, T., Akiyama, T., Esen, A., and Ketudat Cairns, J.R. 2006. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. BMC Plant Biol. 6, 33.

    Article  PubMed Central  PubMed  Google Scholar 

  • Park, M.W., Ha, J., and Chung, S.H. 2008. 20(S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biol. Pharm. Bull. 31, 748–751.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.J., Kim, D.H., Park, S.J., Kim, J.M., and Ryu, J.H. 2012. Ginseng in traditional herbal prescriptions. J. Ginseng Res. 36, 225–241.

    Article  PubMed Central  PubMed  Google Scholar 

  • Park, C.S., Yoo, M.H., Noh, K.H., and Oh, D.K. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87, 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Shin, J.Y., Lee, J.M., Shin, H.S., Park, S.Y., Yang, J.E., Cho, S.K., and Yi, T.H. 2012. Anti-cancer effect of ginsenoside F2 against glioblastoma multiforme in xenograft model in SD rats. J. Ginseng Res. 36, 86–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Son, J.W., Kim, H.J., and Oh, D.K. 2008. Ginsenoside Rd production from the major ginsenoside Rb1 by β-glucosidase from Thermus caldophilus. Biotechnol. Lett. 30, 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tawab, M.A., Bahr, U., Karas, M., Wurglics, M., and Manfred, S.Z. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31, 1065–1071.

    Article  PubMed  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, L., Liu, Q.M., Sung, B.H., An, D.S., Lee, H.G., and Im, W.T. 2011. Bioconversion of ginsenosides Rb1, Rb2, Rc and Rd by novel β-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization. J. Biotechnol. 156, 125–133.

    Google Scholar 

  • Westerberg, K., Elvang, A.M., Stackebrandt, E., and Jansson J.K. 2000. Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int. J. Syst. Evol. Microbiol. 50, 2083–2092.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Q., Zhou, W., Li, X.W., Feng, M.Q., and Zhou, P. 2008. Purification method improvement and characterization of a novel ginsenoside-hydrolyzing β-glucosidase from Paecilomyces Bainier sp. 229. Biosci. Biotechnol. Biochem. 72, 352–359.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, M.H., Yeom, S.J., Park, C.S., Lee, K.W., and Oh, D.K. 2011. Production of aglycon protopanaxadiol via compound K by a thermostable β-glycosidase from Pyrococcus furiosus. Appl. Microbiol. Biotechnol. 89, 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, H.D., Kim, S.J., and Chung, S.H. 2011. Beneficial effects of IH-901 on glucose and lipid metabolisms via activating adenosine monophosphate-activated protein kinase and phosphatidylinositol-3 kinase pathways. Metabolism 60, 43–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Taek Im.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M.K., Cui, CH., Park, S.C. et al. Characterization of recombinant β-glucosidase from Arthrobacter chlorophenolicus and biotransformation of ginsenosides Rb1, Rb2, Rc, and Rd. J Microbiol. 52, 399–406 (2014). https://doi.org/10.1007/s12275-014-3601-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3601-7

Keywords

Navigation