Skip to main content
Log in

Comparative phylogenetic relationships and genetic structure of the caterpillar fungus Ophiocordyceps sinensis and its host insects inferred from multiple gene sequences

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Ophiocordyceps sinensis (Ascomycota: Ophiocordycipitaceae) is a native fungal parasite of Hepialidae caterpillars and one of the most economically important medicinal caterpillar fungi in China. However, little is known about the phylogenetic and evolutionary relationships between O. sinensis and its host insects. In this study, nuclear ITS and β-tubulin sequences from O. sinensis and mitochondrial COI, COII, and Cytb sequences from its hosts were analyzed across 33 populations sampled from five regions in China. Phylogenetically, both O. sinensis and its hosts were divided into three geographically correlated clades, and their phylogenies were congruent. Analysis of molecular variance and calculated coefficients of genetic differentiation revealed significant genetic divergence among the clades within both O. sinensis (FST= 0.878, NST=0.842) and its hosts (FST=0.861, NST=0.816). Estimated gene flow was very low for O. sinensis (Nm=0.04) and the host insects (Nm=0.04) among these three clades. Mantel tests demonstrated a significant correlation (P<0.01) between the genetic distances for O. sinensis and its hosts, as well as a significant association (P<0.05) between geographic and genetic distances in both. The similar phylogenetic relationships, geographic distributions, and genetic structure and differentiation between O. sinensis and its hosts imply that they have coevolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, Y.Q., Hu, B., Xu, F., Zhang, W.M., Zhou, H., and Qu, L.H. 2004. Genetic variation of Cordyceps sinensis, a fruit-body-producing entomopathogenic species from different geographical regions in China. FEMS. Microbiol. Lett. 230, 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y.Q., Wang, N., Qu, L.H., Li, T.H., and Zhang, W.M. 2001. Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8 rDNA. Biochem. Syst. Ecol. 29, 597–607.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y.J., Yang, D.R., Yang, Y.X., and Zhang, Y.P. 1998. Molecular evolution of Cordyceps sinensis from seven regions on the Tibetan Plateau. In Proceedings of the Third Youth Annual Conference of the China Association for Science and Technology (Materials Science and Engineering), pp. 87–89. Edited by China Science and Technology Press, Beijing, China.

    Google Scholar 

  • Chen, Y.J., Zhang, Y.P., Yang, Y.X., and Yang, D.R. 1999. Genetic diversity and taxonomic implication of Cordyceps sinensis as revealed by RAPD markers. Biochem. Genet. 37, 201–213.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, Z., Geng, Y., Liang, H.H., Yang, X.L., Li, S., Zhu, Y.G., Guo, G.P., Zhou, T.S., and Chen, J.K. 2007. Phylogenetic relationships of host insects of Cordyceps sinensis inferred from mitochondrial cytochrome b sequences. Prog. Nat. Sci. 17, 789–797.

    Article  CAS  Google Scholar 

  • Dybdahl, M.F. and Lively, C.M. 1996. The geography of coevolution: comparative population structures for a snail and its trematode parasite. Evolution 50, 2264–2275.

    Article  Google Scholar 

  • Excoffier, L., Laval, G., and Schneider, S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50.

    CAS  PubMed Central  Google Scholar 

  • Excoffier, L., Smouse, P.E., and Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.

    CAS  PubMed  Google Scholar 

  • Hajibabaei, M., Singer, G.A., Hebert, P.D., and Hickey, D.A. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 23, 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Hao, J.J., Cheng, Z., Liang, H.H., Yang, X.L., Li, S., Zhou, T.S., Zhang, W.J., and Chen, J.K. 2009. Genetic differentiation and distributing pattern of Cordyceps sinensis in China revealed by rDNA ITS sequences. Chinese Traditional Herbal Drugs 40, 112–116.

    CAS  Google Scholar 

  • Hebert, P.D., Ratnasingham, S., and deWaard, J.R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270, S96–99.

    Article  CAS  Google Scholar 

  • Jarne, P. and Théron, A. 2001. Genetic structure in natural populations of flukes and snails: a practical approach and review. Parasitology 123, S27–40.

    Article  PubMed  Google Scholar 

  • Keeney, D.B., King, T.M., Rowe, D.L., and Poulin, R. 2009. Contrasting mtDNA diversity and population structure in a direct-developing marine gastropod and its trematode. Mol. Ecol. 18, 4591–4603.

    Article  PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Klassen, G.J. 1992. Coevolution: a history of the macroevolutionary approach to studying host-parasite association. J. Parasitol. 78, 573–587.

    Article  CAS  PubMed  Google Scholar 

  • Legendre, P., Desdevises, Y., and Bazin, E. 2002. A statistical test for host-parasite coevolution. Syst. Biol. 51, 217–234.

    Article  PubMed  Google Scholar 

  • Li, J.J. 1995. Three stages of uplift and altitude and age of planation surface of the Tibetan Plateau. In: Committee of Geomorphology and Quaternary Geology in the Society of Geography of China. (ed.), Geomorphology-Environment-Development. China Environment Press, Beijing, China.

    Google Scholar 

  • Li, S.P. and Tsim, K.W.K. 2004. The biological and pharmacological properties of Cordyceps sinensis, a traditional Chinese medicine that has broad clinical applications. In Herbal and Traditional Medicine: Molecular Aspects of Health, pp. 657–686. Edited by CRC Press, New York, N.Y., USA.

    Google Scholar 

  • Liang, H.H., Cheng, Z., Yang, X.L., Li, S., Ding, Z.Q., Zhou, T.S., Zhang, W.J., and Chen, J.K. 2008. Genetic diversity and structure of Cordyceps sinensis populations from extensive geographical regions in China as revealed by ISSR markers. J. Microbiol. 46, 549–556.

    Article  CAS  PubMed  Google Scholar 

  • Liang, H.H., Cheng, Z., Yang, X.L., Li, S., Zhou, T.S., Zhang, W.J., and Chen, J.K. 2005. Genetic variation and affinity of Cordyceps sinensis in Qinghai Province based on analysis of morphologic characters and inter-simple sequence repeat markers. Chinese Traditional Herbal Drugs 36, 1859–1864.

    CAS  Google Scholar 

  • Liu, F., Wu, X.L., Yin, D.H., Chen, S.J., and Zeng, W. 2005. Overview in biological studies of host insects of Cordyceps sinensis. Chongqing J. Res. Chin. Drugs Herbs 51, 45–52.

    Google Scholar 

  • Lu, J. and Tang, X.Q. 2006. Fauna analyses of insects in the Mountain Namjagbarwa region. Tibet’s Sci. Technol. 5, 55–60.

    Google Scholar 

  • Madsen, D.B., Ma, H.Z., Rhode, D., Brantingham, P.J., and Forman, S.L. 2008. Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau. Quaternary Res. 69, 316–325.

    Article  Google Scholar 

  • Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 2, 209–220.

    Google Scholar 

  • Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., and Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, A.M. and Banks, J.C. 2001. Analytical approaches to measuring cospeciation of host and parasites: through a glass, darkly. Int. J. Parasitol. 31, 1012–1022.

    Article  CAS  PubMed  Google Scholar 

  • Peakall, R. and Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Resour. 6, 288–295.

    Google Scholar 

  • Prugnolle, F., Théron, A., Pointier, J.P., Jabbour-Zahab, R., Jarne, P., Durand, P., and de Meeûs, T. 2005. Dispersal in a parasitic worm and its two hosts: consequences for local adaptation. Evolution 59, 296–303.

    PubMed  Google Scholar 

  • Qi, W.L. and Guo, L.Y. 2007. The analysis of the effects of climate change on ecological environment around the Qinghai Lake. Prataculture Animal Husbandry 7, 33–43.

    Google Scholar 

  • Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X., and Rozas, R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y.F., Li, J.J., and Li, B.Y. 1998. Uplift and Environmental Effectivity of the Qinghai-Tibet Plateau During the Late Cenozoic. Guangdong Science and Technology Press, Guangzhou, China.

    Google Scholar 

  • Silva-Brandão, K.L., Lyra, M.L., and Freitas, A.V. 2009. Barcoding Lepidoptera: Current situation and perspectives on the usefulness of a contentious technique. Neotrop. Entomol. 38, 441–451.

    Article  PubMed  Google Scholar 

  • Stensrud, Ø., Schumacher, T., Shalchian-Tabrizi, K., Svegarden, I.B., and Kauserud, H. 2007. Accelerated nrDNA evolution and profound AT bias in the medicinal fungus Cordyceps sinensis. Mycol. Res. 111, 409–415.

    Article  CAS  PubMed  Google Scholar 

  • Sung, G.H., Hywel-Jones, N.L., Sung, J.M., Luangsa-Ara, J.J., Shrestha, B., and Spatafora, J.W. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57, 5–59.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular Evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, F.Y., Gong, X., Hu, C.M., and Hao, G. 2008. Phylogeography of an alpine species Primula secundiflora inferred from the chlo roplast DNA sequence variation. J. Syst. Evol. 46, 13–22.

    CAS  Google Scholar 

  • Wang, X.L. and Yao, Y.J. 2011. Host insect species of Ophiocordyceps sinensis: a review. ZooKeys 127, 43–59.

    Article  PubMed  Google Scholar 

  • Xiao, W., Yang, J.L., Zhu, P., Cheng, K.L., He, H.X., Zhu, H.X., and Wang, Q. 2009. Non-support of species complex hypothesis of Cordyceps sinensis by targeted rDNA-ITS sequence analysis. Mycosystema 28, 724–730.

    CAS  Google Scholar 

  • Yang, D.R., Li, C.D., Shu, C., and Yang, Y.X. 1996. Studies on the Chinese species of the genus Hepialus and their geographical distribution. Acta Entomologica Sinica 39, 413–422.

    Google Scholar 

  • Yuan, B.Y., Chen, K.Z., Bowler, J.M., and Ye, S.J. 1990. The formation and evolution of the Qinghai Lake. Quaternary Science 3, 233–243.

    Google Scholar 

  • Zhang, Y.J., Xu, L.L., Zhang, S., Liu, X.Z., An, Z.Q., Wang, M., and Guo, Y.L. 2009. Genetic diversity of Ophiocordyceps sinensis, a medicinal fungus endemic to the Tibetan Plateau: Implications for its evolution and conservation. BMC Evol. Biol. 9, 1–12.

    Article  CAS  Google Scholar 

  • Zhu, J.S., Gao, L., Li, X.H., Yao, Y.S., Zhao, J.Q., Zhou, Y.J., and Lu, J.H. 2010. Maturational alteration of oppositely orientated rDNA and differential proliferation of GC- and AT-biased genotypes of Ophiocordyceps sinensis and Paecilomyces hepiali in natural Cordyceps sinensis. Am. J. Biomed. Sci. 2, 217–238.

    Article  CAS  Google Scholar 

  • Zhu, J.S., Halpern, G.M., and Jones, K. 1998. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part I. J. Altern. Complement. Med. 4, 289–303.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, H.Y. and Mou, J.J. 2006. Removal of chongcao at the source of the three rivers: A craze out of control. In Crisis and Breakthrough of China’s Environment, pp. 291–298. Edited by Social Sciences Academic Press, Beijing, China.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Cheng.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, QM., Wang, QX., Zhou, XL. et al. Comparative phylogenetic relationships and genetic structure of the caterpillar fungus Ophiocordyceps sinensis and its host insects inferred from multiple gene sequences. J Microbiol. 52, 99–105 (2014). https://doi.org/10.1007/s12275-014-3391-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3391-y

Keywords

Navigation