Skip to main content
Log in

Isolation and characterization of novel lipase gene LipHim1 from the DNA isolated from soil samples

Journal of Microbiology Aims and scope Submit manuscript

Abstract

Metagenomics is a magnificent tool to isolate genes from unknown/uncharacterized species and also from organisms that cannot be cultured. In this study, we constructed a metagenomic library from isolated DNA of soil samples collected from Palamuru University campus premises, in Mahabubnagar district of Andhra Pradesh, India. We isolated a novel lipase gene LipHim1, which has an open reading frame of 591 base pairs and encodes ∼23 kDa protein consisting of 196 amino acids. The Lipase LipHim1 showed maximum 32% homology at the protein level with the extracellular Aeromonas hydrophila lipase (Class II, GDSL family) and was significantly different from all other known lipases. The isolated lipase catalyzed the hydrolysis of fatty acid esters of polyoxyethylene sorbitan such as Tween 60. Our results indicate that the isolated lipase gene is novel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Arpigny, J.L. and Jaeger, K.E. 1999. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 343, 177–183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emanuilova, E., Kambourova, M., Dekovska, M., and Manolov, R. 1993. Thermoalkalophilic lipase-producing bacillus selected by continuous cultivation. FEMS Microbiol. Lett. 108, 247–200.

    Article  CAS  Google Scholar 

  • Gupta, R., Gupta, N., and Rathi, P. 2004. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763–781.

    Article  CAS  PubMed  Google Scholar 

  • Handelsman, J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henne, A., Schmitz, R.A., Bomeke, M., Gottschalk, G., and Daniel, R. 2000. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl. Environ. Microbiol. 66, 3113–3116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaeger, K.E., Dijkstra, B.W., and Reetz, M.T. 1999. Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315–351.

    Article  CAS  PubMed  Google Scholar 

  • Jaeger, K.E. and Eggert, T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13, 390–397.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.W., Won, K., Lim, H.K., Kim, J.C., Choi, G.J., and Cho, K.Y. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65, 720–726.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, P. and Eck, J. 2005. Metagenomics and industrial applications. Nat. Rev. Microbiol. 3, 510–516.

    Article  CAS  PubMed  Google Scholar 

  • Macrae, A.R. 1983. Extracellular microbial lipases. In Fogarty, W.M. (ed.), Microbialenzymes and biotechnology, pp. 225–250. Applied Science Publishers, London, UK.

    Google Scholar 

  • Ploua, F.J., Ferrera, M., Nuerob, O.M.V.M., Alcaldea, M., Reyesb, F., and Ballesterosa, A. 1998. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol. Techniques 12, 183–186.

    Article  Google Scholar 

  • Rees, H.C., Grant, S., Jones, B., Grant, W.D., and Heaphy, S. 2003. Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7, 415–421.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, J.K., Ahn, D.G., Kim, Y.G., and Oh, J.W. 2005. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71, 817–825.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rondon, M.R., August, P.R., Bettermann, A.D., Brady, S.F., Grossman, T.H., Liles, M.R., Loiacono, K.A., Lynch, B.A., MacNeil, I.A., Minor, C., and et al. 2000. Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541–2547.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmeisser, C., Steele, H., and Streit, W.R. 2007. Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol. 75, 955–962.

    Article  CAS  PubMed  Google Scholar 

  • Torsvik, V., Goksoyr, J., and Daae, F.L. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782–787.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voget, S., Eggewie, C.L., Uesbeck, A., Raasch, C., Jaeger, K.E., and Streit, W.R. 2003. Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol. 69, 6235–6242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou, J., Bruns, M.A., and Tiedje, J.M. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan Kumar Pindi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pindi, P.K., R., R. & Pavankumar, T.L. Isolation and characterization of novel lipase gene LipHim1 from the DNA isolated from soil samples. J Microbiol. 52, 384–388 (2014). https://doi.org/10.1007/s12275-014-3302-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3302-2

Keywords

Navigation