Skip to main content
Log in

Identification of a new Bacillus licheniformis strain producing a bacteriocin-like substance

  • Articles
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The emergence of antibiotic resistance has spurred a great number of studies for development of new antimicrobials in the past decade. The purpose of this study was to screen environmental samples for Bacillus strains producing potent antimicrobial agents. A new strain, which showed strong antimicrobial activity against Staphylococcus aureus and Salmonella enterica ser. Pullorum, was isolated from soil and designated as B116. This new isolate was identified as Bacillus licheniformis by morphological, biochemical and genetic analyses. The production of bacteriocin-like substance (BLS) started at early exponential phase and achieved highest level at early stationary phase. The BLS was precipitated by ammonium sulfate and its molecular mass was determined as ∼4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Culture supernatant of the new isolate exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria, including Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Micrococcus luteus, Escherichia coli, and Salmonella spp. The BLS was resistant to heat, acid and alkaline treatment. Activity of the BLS was totally lost after digestion by pronase and partially lost after digestion by papain and lipase. The new isolate and relevant BLS are potentially useful in food and feed applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abriouel, H., Franz, C.M., Ben Omar, N., and Gálvez, A. 2011. Diversityand applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35, 201–232.

    Article  PubMed  CAS  Google Scholar 

  • Barbosa, T.M., Serra, C.R., La Ragione, R.M., Woodward, M.J., and Henriques, A.O. 2005. Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl. Environ. Microbiol. 71, 968–978.

    Article  PubMed  CAS  Google Scholar 

  • Barboza-Corona, J.E., Vazquez-Acosta, H., Bideshi, D.K., and Salcedo-Hernandez, R. 2007. Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch. Microbiol. 187, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Bari, M.L., Ukuku, D.O., Kawasaki, T., Inatsu, Y., Isshiki, K., and Kawamoto, S. 2005. Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. J. Food Prot. 68, 1381–1387.

    PubMed  CAS  Google Scholar 

  • Begley, M., Cotter, P.D., Hill, C., and Ross, R.P. 2009. Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl. Environ. Microbiol. 75, 5451–5460.

    Article  PubMed  CAS  Google Scholar 

  • Boer, A.S., Priest, F., and Diderichsen, B. 1994. On the industrial use of Bacillus licheniformis: a review. Appl. Microbiol. Biotechnol. 40, 595–598.

    Article  Google Scholar 

  • Cars, O., Hedin, A., and Heddini, A. 2011. The global need for effective antibiotics-moving towards concerted action. Drug Resist. Updat. 14, 68–69.

    Article  PubMed  Google Scholar 

  • Cleveland, J., Montville, T.J., Nes, I.F., and Chikindas, M.L. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • De Vuyst, L., Callewaert, R., and Crabbé, K. 1996. Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology 142, 817–827.

    Article  Google Scholar 

  • Dischinger, J., Josten, M., Szekat, C., Sahl, H.G., and Bierbaum, G. 2009. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS ONE 4, e6788.

    Article  PubMed  Google Scholar 

  • Freire-Moran, L., Aronsson, B., Manz, C., Gyssens, I.C., So, A.D., Monnet, D.L., and Cars, O. 2011. Critical shortage of new antibiotics in development against multidrug-resistant bacteria-time to react is now. Drug Resist. Updat. 14, 118–124.

    Article  PubMed  Google Scholar 

  • Hadj-Ali, N.E., Agrebi, R., Ghorbel-Frikha, B., Sellami-Kamoun, A., Kanoun, S., and Nasri, M. 2007. Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NH1. Enzyme Microb. Technol. 40, 515–523.

    Article  Google Scholar 

  • He, Z., Kisla, D., Zhang, L., Yuan, C., Green-Church, K.B., and Yousef, A.E. 2007. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl. Environ. Microbiol. 73, 168–178.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova, I., Miteva, V., Stefanova, T., Pantev, A., Budakov, I., Danova, S., Moncheva, P., Nikolova, I., Dousset, X., and Boyaval, P. 1998. Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int. J. Food Microbiol. 42, 147–158.

    Article  PubMed  CAS  Google Scholar 

  • Kouakou, P., Ghalfi, H., Destain, J., Duboisdauphin, R., Evrard, P., and Thonart, P. 2008. Enhancing the antilisterial effect of Lactobacillus curvatus CWBI-B28 in pork meat and cocultures by limiting bacteriocin degradation. Meat Sci. 80, 640–648.

    Article  PubMed  CAS  Google Scholar 

  • Kruszewska, D., Sahl, H.G., Bierbaum, G., Pag, U., Hynes, S.O., and Ljungh, A. 2004. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J. Antimicrob. Chemother. 54, 648–653.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.J., Joo, Y.J., Park, C.S., Kim, S.H., Hwang, I.K., Ahn, J.S., and Mheen, T.I. 1999. Purification and characterization of a bacteriocin produced by Lactococcus lactis subsp. lactis H-559 isolated from kimchi. J. Biosci. Bioeng. 88, 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Parente, E., Ricciardi, A., and Addario, G. 1994. Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 14ONWC during batch fermentation. Appl. Microbiol. Biotechnol. 41, 388–394.

    CAS  Google Scholar 

  • Reeves, P. 1972. The bacteriocins. Chapman and Hall, London, UK.

    Book  Google Scholar 

  • Rodriguez, J.M., Cintas, L.M., Casaus, P., Suarez, A., and Hernandez, P.E. 1995. PCR detection of the lactocin S structural gene in bacteriocin-producing lactobacilli from meat. Appl. Environ. Microbiol. 61, 2802–2805.

    PubMed  CAS  Google Scholar 

  • Schagger, H. 2006. Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22.

    Article  PubMed  Google Scholar 

  • Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56, 845–857.

    Article  PubMed  CAS  Google Scholar 

  • Stein, T., Borchert, S., Conrad, B., Feesche, J., Hofemeister, B., Hofemeister, J., and Entian, K.D. 2002. Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J. Bacteriol. 184, 1703–1711.

    Article  PubMed  CAS  Google Scholar 

  • Wescombe, P.A., Upton, M., Renault, P., Wirawan, R.E., Power, D., Burton, J.P., Chilcott, C.N., and Tagg, J.R. 2011. Salivaricin 9, a new lantibiotic produced by Streptococcus salivarius. Microbiology 157, 1290–1299.

    Article  PubMed  CAS  Google Scholar 

  • West, C.A. and Warner, P.J. 1988. Plantacin B, a bacteriocin produced by Lactobacillus plantarum NCDO 1193. FEMS Microbiol. Lett. 49, 163–165.

    CAS  Google Scholar 

  • Wieckowicz, M., Schmidt, M., Sip, A., and Grajek, W. 2010. Development of a PCR-based assay for rapid detection of class IIa bacteriocin genes. Lett. Appl. Microbiol. 52, 281–289.

    Article  Google Scholar 

  • Zheng, G., Yan, L.Z., Vederas, J.C., and Zuber, P. 1999. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181, 7346–7355.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rijun Zhang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Yu, Z., Xie, J. et al. Identification of a new Bacillus licheniformis strain producing a bacteriocin-like substance. J Microbiol. 50, 452–458 (2012). https://doi.org/10.1007/s12275-012-2051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2051-3

Keywords

Navigation