Skip to main content
Log in

Evaluation of the cell growth of mycobacteria using Mycobacterium smegmatis mc2 155 as a representative species

  • Articles
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The study of the in vitro cell growth of mycobacteria still remains a fastidious, difficult, and time-consuming procedure. In addition, assessing mycobacterial growth in the laboratory is often complicated by cell aggregation and slow growth-rate. We now report that the use of a stainless steel spring in the culture led to an absence of large cell clumps, to a decrease of dead cells in the exponential phase and to growth of a more homogeneous population of large cells. We also report that flow cytometry is a rapid, simple and reliable approach to monitor mycobacterial cell growth and viability. Here, we monitored Mycobacterium smegmatis cellular growth by optical density, dry cell mass, and colony forming units; in addition, viability, cell size and granularity profiles were analyzed by flow cytometry, and cell morphology by electron microscopy. Cultures monitored by flow cytometry may lead to a better understanding of the physiology of mycobacteria. Moreover, this methodology may aid in characterizing the cell growth of other fastidious species of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Álvarez-Barrientos, A., Arroyo, J., Cantón, R., Nombela, C., and Sánchez-Pérez, M. 2000. Applications of flow cytometry to clinical microbiology. Clin. Microbiol. Rev. 13, 167–195.

    Article  PubMed  Google Scholar 

  • Beste, D.J., Peters, J., Hooper, T., Avignone-Rossa, C., Bushell, M.E., and McFadden, J. 2005. Compiling a molecular inventory for Mycobacterium bovis BCG at two growth rates: evidence for growth rate-mediated regulation of ribosome biosynthesis and lipid metabolism. J. Bacteriol. 187, 1677–1684.

    Article  PubMed  CAS  Google Scholar 

  • Bremer, H. and Dennis, P.P. 1996. Modulation of chemical composition and other parameters of the cell growth rate, pp. 1553–1568. In Neidhardt, F.C., Curtis, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., and Umbarger, H.E. (eds.), Escherichia coli and Salmonella: cellular and molecular biology. 2nd ed. American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Burdz, T.V.N., Wolfe, J., and Kabani, A. 2003. Evaluation of sputum decontamination methods for Mycobacterium tuberculosis using viable colony counts and flow cytometry. Diagn. Microbiol. Infect. Dis. 47, 503–509.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R.A. 2004. Quantitative relationships for specific growth rates and macromolecular compositions of Mycobacterium tuberculosis, Streptomyces coelicolor A3(2) and Escherichia coli B/r: an integrative theoretical approach. Microbiology 150, 1413–1426.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R.A. 2007. A scheme for the analysis of microarray measurements based on a quantitative theoretical framework for bacterial cell growth: application to studies of Mycobacterium tuberculosis. Microbiology 153, 3337–3349.

    Article  PubMed  CAS  Google Scholar 

  • Engele, M., Stöbel, E., Castiglione, K., Schwerdtner, N., Wagner, M., Bölcskei, P., Röllinghoff, M., and Stenger, S. 2002. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J. Immunol. 168, 1328–133

    PubMed  CAS  Google Scholar 

  • Gonzalez-y-Merchand, J.A., Colston, M.J., and Cox, R.A. 1998. Roles of multiple promoters in transcription of ribosomal DNA: effects of growth conditions on precursor rRNA synthesis in mycobacteria. J. Bacteriol. 180, 5756–5761.

    PubMed  CAS  Google Scholar 

  • Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., and Williams, S.T. 1994. Bergey’s Manual of Determinative Bacteriology, pp. 597–603. 9th ed, The Williams & Wilkins Co., Baltimore, Maryland, USA.

    Google Scholar 

  • James, B.W., Williams, A., and Marsh, P.D. 2000. The physiology and pathogenicity of Mycobacterium tuberculosis grown under controlled conditions in a defined medium. J. Appl. Microbiol. 88, 669–677.

    Article  PubMed  CAS  Google Scholar 

  • MacFaddin, J.F. 1980. Biochemical tests for identification of medical bacteria, pp. 59–63. 2nd ed. The Williams & Wilkins Co., Baltimore, Maryland, USA.

    Google Scholar 

  • Moore, A.V., Kirk, S.M., Callister, S.M., Mazurek, G.H., and Schell, R.F. 1999. Safe determination of susceptibility of Mycobacterium tuberculosis to antimycobacterial agents by flow cytometry. J. Clin. Microbiol. 37, 479–483.

    PubMed  CAS  Google Scholar 

  • Newton, J.A.Jr. and Weiss, P.J. 1994. Aspiration pneumonia caused by Mycobacterium smegmatis. Mayo Clin. Proc. 69, 296–298.

    PubMed  Google Scholar 

  • Ratledge, C. 1982. Nutrition, growth and metabolism, pp. 185-271. In Ratledge, C. and Stanford, J.L. (eds.), Biology of the Mycobacteria, Academic Press Inc Ltd. London, UK.

    Google Scholar 

  • Sander, P., Belova, L., Kidan, Y.G., Mankin, A.S., and Böttger, E.C. 2002. Ribosomal and non-ribosomal resistance to oxazolidinones: species-specific idiosyncrasy of ribosomal alterations. Mol. Microbiol. 46, 1295–1304.

    Article  PubMed  CAS  Google Scholar 

  • Sander, P., Prammananan, T., and Böttger, E.C. 1996. Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. Mol. Microbiol. 22, 841–848.

    Article  PubMed  CAS  Google Scholar 

  • Skiest, D.J. and Levi, M.E. 1998. Catheter-related bacteremia due to Mycobacterium smegmatis. South Med. J. 91, 36–37.

    Article  PubMed  CAS  Google Scholar 

  • Smeulders, M.J., Keer, J., Speight, R.A., and Williams, H.D. 1999. Adaptation of Mycobacterium smegmatis to stationary phase. J. Bacteriol. 181, 270–283.

    PubMed  CAS  Google Scholar 

  • Stephan, J., Bender, J., Wolschendorf, F., Hoffmann, C., Roth, E., Mailänder, C., Engelhardt, H., and Niederweis, M. 2005. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol. Microbiol. 58, 714–730.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R.J.Jr., Nash, D.R., Tsukamura, M., Blacklock, Z.M., and Silcox, V.A. 1998. Human disease due to Mycobacterium smegmatis. J. Infect. Dis. 158, 52–59.

    Article  Google Scholar 

  • Wayne, L.G. 1994. Cultivation of Mycobacterium tuberculosis for research purposes, pp. 73–83. In Bloom, B.R. (ed.), Tuberculosis: pathogenesis, protection and control. American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Wheeler, P.R. and Ratledge, C. 1994. Metabolism of Mycobacterium tuberculosis, pp. 353–380. In Bloom, B.R. (ed.). Tuberculosis: pathogenesis, protection and control, American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • WHO (World Health Organization). 2011. Global tuberculosis control 2011. Available at: http://www.who.int/tb/publications/global_report/2011/gtbr11_full.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Gonzalez-y-Merchand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-y-Merchand, J.A., Zaragoza-Contreras, R., Guadarrama-Medina, R. et al. Evaluation of the cell growth of mycobacteria using Mycobacterium smegmatis mc2 155 as a representative species. J Microbiol. 50, 419–425 (2012). https://doi.org/10.1007/s12275-012-1556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-1556-0

Keywords

Navigation