Skip to main content
Log in

Characterization of Escherichia coli EutD: a phosphotransacetylase of the ethanolamine operon

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Escherichia coli genes pta and eutD encode proteins containing the phosphate-acetyltransferase domain. EutD is composed only by this domain and belongs to the ethanolamine operon. This enzyme has not been characterized yet, and its relationship to the multimodular E. coli phosphotransacetylase (Pta) remains unclear. In the present work, a detailed characterization of EutD from E. coli (EcEutD) was performed. The enzyme is a more efficient phosphotransacetylase than E. coli Pta (EcPta) in catalyzing its reaction in either direction and assembles as a dimer, being differentially modulated by EcPta effectors. When comparing EutD and Pta, both from E. coli, certain divergent regions of the primary structure responsible for their unique properties can be found. The growth on acetate of the E. coli pta acs double-mutant strain, was complemented by either introducing EcEutD or by inducing the eut operon with ethanolamine. In this case, the expression of a phosphotransacetylase different from Pta was confirmed by activity assays. Overall, the results indicate that EcEutD and Pta, although able to catalyse the same reaction, display differential efficiency and regulation, and also differ in the induction of their expression. However, under certain growth conditions, they can fulfil equal roles in E. coli metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baba, T., T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. Datsenko, M. Tomita, B. Wanner, and H. Mori. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Sys. Biol. 2, 2006.0008.

    Google Scholar 

  • Blackwell, C.M., F.A. Scarlett, and J.M. Turner. 1977. Microbial metabolism of amino alcohols: control of formation and stability of partially purified ethanolamine ammonia-lyase in Escherichia coli. J. Gen. Microbiol. 98, 133–139.

    CAS  Google Scholar 

  • Blackwell, C.M. and J.M. Turner. 1978. Microbial metabolism of amino alcohols: purification and properties of coenzyme B12-dependent ethanolamine ammonia-lyase of Escherichia coli. Biochem. J. 175, 555–563.

    CAS  PubMed  Google Scholar 

  • Blattner, F.R., G. Plunkett, C.A. Bloch, N.T. Perna, V. Burland, M. Riley, J. Collado-Vides, and et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462.

    Article  CAS  PubMed  Google Scholar 

  • Bologna, F.P., C.S. Andreo, and M.F. Drincovich. 2007. Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation and structure. J. Bacteriol. 189, 5937–5946.

    Article  CAS  PubMed  Google Scholar 

  • Brinsmade, S.R. and J.C. Escalante-Semerena. 2004. The eutD gene of Salmonella enterica encodes a protein with phosphotransacetylase enzyme activity. J. Bacteriol. 186, 1890–1892.

    Article  CAS  PubMed  Google Scholar 

  • Brinsmade, S.R. and J.C. Escalante-Semerena. 2007. In vivo and in vitro analyses of single-amino acid variants of the Salmonella enterica phosphotransacetylase enzyme provide insights into the function of its N-terminal domain. J. Biol. Chem. 282, 12629–12640.

    Article  CAS  PubMed  Google Scholar 

  • Brinsmade, S.R., T. Paldon, and J.C. Escalante-Semerena. 2005. Minimal functions and physiological condictions required for growth of Salmonella enterica on ethanolamine in the absence of the metabolosome. J. Bacteriol. 187, 8039–8046.

    Article  CAS  PubMed  Google Scholar 

  • Brown, T.D.K., M.C. Jones-Mortimer, and H.L. Kornberg. 1977. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J. Gen. Microbiol. 102, 327–336.

    CAS  PubMed  Google Scholar 

  • Campos-Bermudez, V.A., F.P. Bologna, C.S. Andreo, and M.F. Drincovich. 2010. Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation. FEBS J. 277, 1957–1966.

    Article  CAS  PubMed  Google Scholar 

  • Datsenko, K.A. and B.L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.

    Article  CAS  PubMed  Google Scholar 

  • El-Mansi, M., A.J. Cozzone, J. Shiloach, and B.J. Eikmanns. 2006. Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. Curr. Opin. Microbiol. 9, 173–179

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, K., N. Morooka, Y. Yamamoto, K. Fujita, K. Isono, S. Choi, E. Ohtsubo, T. Baba, B.L. Wanner, H. Mori, and T. Horiuchi. 2006. Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol. Syst. Biol. 2, 2006 0007.

    Article  PubMed  Google Scholar 

  • Kitagawa, M., T. Ara, M. Arifuzzaman, T. Ioka-Nakamichi, E. Inamoto, H. Toyonaga, and H. Mori. 2005. Complete set of ORF clones of Escherichia coli ASKA library (A Complete Set of E. coli K-12 ORF Archive): Unique resources for biological research. DNA Res. 12, 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Kofoid, E., C. Rappleye, I. Stojiljkovic, and J. Roth. 1999. The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J. Bacteriol. 181, 5317–5329.

    CAS  PubMed  Google Scholar 

  • Kumari, S., C.M. Beatty, D.F. Browing, S.J.W. Busby, E.J. Simel, G. Hovel-Miner, and A.J. Wolfe. 2007. The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J. Bacteriol. 189, 5574–5581.

    Article  Google Scholar 

  • Kumari, S., R. Tishel, M. Eisenbach, and A.J. Wolfe. 1995. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl Coenzyme A synthetase in Escherichia coli. J. Bacteriol. 177, 2878–2886

    CAS  PubMed  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer, A., J.B. Anderson, F. Chitsaz, M. Derbyshire, C. DeWeese-Scott, J.H. Fong, L.Y. Geer, and et al. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 37, D205–D210.

    Article  CAS  PubMed  Google Scholar 

  • Mori, K., R. Bando, N. Hieda, and T. Toraya. 2004. Identification of a reactivating factor for adenosylcobalamin-dependent ethanolamine ammonia lyase. J. Bacteriol. 186, 6845–6854.

    Article  CAS  PubMed  Google Scholar 

  • Sagermann, M., A. Ohtaki, and K. Nikolakakis. 2009. Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompartment. Proc. Natl. Acad. Sci. USA 106, 8883–8887.

    Article  CAS  PubMed  Google Scholar 

  • Scarlett, F.A. and J.M. Turner. 1976. Microbial metabolism of amino alcohols. Ethanolamine catabolism mediated by coenzyme B12-dependent ethanolamine ammonia-lyase in Escherichia coli and Klebsiella aerogenes. J. Gen. Microbiol. 95, 173–176.

    CAS  PubMed  Google Scholar 

  • Sedmak, J.J. and S.E. Grossberg. 1977. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 79, 544–552.

    Article  CAS  PubMed  Google Scholar 

  • Sheppard, D.E. and J.R. Roth. 1994. A rationale for autoinduction of a transcriptional activator: ethanolamine ammonia-lyase (EutBC) and the operon activator (EutR) compete for adenosyl-cobalamine in Salmonella typhimurium. J. Bacteriol. 176, 1287–1296.

    CAS  PubMed  Google Scholar 

  • Starai, V.J. and J.C. Escalante-Semerena. 2004. Acetyl-coenzyme A synthetase (AMP forming). Cell Mol. Sci. 61, 2020–2030.

    CAS  Google Scholar 

  • Starai, V.J., J. Garrity, and J.C. Escalante-Semerena. 2005. Acetate excretion during growth of Salmonella enterica on ethanolamine requires phosphotransacetilase (EutD) activity, and acetate recapture requires acetyl-CoA synthetase (Acs) and phosphotransacetylase (Pta) activities. Microbiology 151, 3793–3801.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, A.J. 2005. The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María F. Drincovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bologna, F.P., Campos-Bermudez, V.A., Saavedra, D.D. et al. Characterization of Escherichia coli EutD: a phosphotransacetylase of the ethanolamine operon. J Microbiol. 48, 629–636 (2010). https://doi.org/10.1007/s12275-010-0091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-0091-0

Keywords

Navigation