Skip to main content
Log in

The mutation of a novel Saccharomyces cerevisiae SRL4 gene rescues the Lethality of rad53 and lcd1 mutations by modulating dNTP levels

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The SRL4 (YPL033C) gene was initially identified by the screening of Saccharomyces cerevisiae genes that play a role in DNA metabolism and/or genome stability using the SOS system of Escherichia coli. In this study, we found that the srl4Δ mutant cells were resistant to the chemicals that inhibit nucleotide metabolism and evidenced higher dNTP levels than were observed in the wild-type cells in the presence of hydroxyurea. The mutant cells also showed a significantly faster growth rate and higher dNTP levels at low temperature (16°C) than were observed in the wild-type cells, whereas we detected no differences in the growth rate at 30°C. Furthermore, srl4Δ was shown to suppress the lethality of mutations of the essential S phase checkpoint genes, RAD53 and LCD1. These results indicate that SRL4 may be involved in the regulation of dNTP production by its function as a negative regulator of ribonucleotide reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvino, G.M., D. Collingwood, J.M. Murphy, J. Delrow, B.J. Brewer, and M.K. Raghuraman. 2007. Replication in hydroxyurea: It’s a matter of time. Mol. Cell Biol. 27, 6396–6406.

    Article  PubMed  CAS  Google Scholar 

  • Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 2239–3330.

    Article  Google Scholar 

  • Ben-Yehoyada, M., J. Gautier, and A. Dupre. 2007. The DNA damage response during an unperturbed S-phase. DNA Repair 6, 914–922.

    Article  PubMed  CAS  Google Scholar 

  • Branzei, D. and M. Foiani. 2006. The Rad53 signal transduction pathway: replication fork stabilization, DNA repair, and adaptation. Exp. Cell Res. 312, 2654–2659.

    Article  PubMed  CAS  Google Scholar 

  • Chabes, A., V. Domkin, and L. Thelander. 1999. Yeast Sml1, a protein inhibitor of ribonucleotide reductase. J. Biol. Chem. 274, 36679–36683.

    Article  PubMed  CAS  Google Scholar 

  • Chabes, A. and B. Stillman. 2007. Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 104, 1183–1188.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., M.B. Smolka, and H. Zhou. 2007. Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae. J. Biol. Chem. 282, 986–995.

    Article  PubMed  CAS  Google Scholar 

  • Chris, K., S. Michaelis, and A. Mitchell. 1994. Methods in yeast genetics, p. 207–217. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY, USA.

    Google Scholar 

  • Fu, Y. and W. Xiao. 2006. Identification and characterization of CRT10 as a novel regulator of Saccharomyces cerevisiae ribonucleotide reductase genes. Nucleic Acids Res. 34, 1876–1883.

    Article  PubMed  CAS  Google Scholar 

  • Gerik, K.J., X. Li, and A. Pautz, and P.M. Burgers. 1998. Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 273, 19747–19755.

    Article  PubMed  CAS  Google Scholar 

  • Guarino, E., I. Salguero, A. Jimenez-Sanchez, and E.C. Guzman. 2007. Double-strand break generation under deoxyribonucleotide starvation in Escherichia coli. J. Bacteriol. 189, 5782–5786.

    Article  PubMed  CAS  Google Scholar 

  • Hakansson, P., L. Dahl, O. Chilkova, V. Domkin, and L. Thelander. 2006. The Schizosaccharomyces pombe replication inhibitor Spd1 regulates ribonucleotide reductase activity and dNTPs by binding to the large Cdc22 subunit. J. Biol. Chem. 281, 1778–1783.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M., Z. Zhou, and S.J. Elledge. 1998. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94, 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Koc, A. and G.F. Merrill. 2007. Checkpoint deficient rad53-11 yeast cannot accumulate dNTPs in response to DNA damage. Biochem. Biophys. Res. Commun. 353, 527–530.

    Article  PubMed  CAS  Google Scholar 

  • Longhese, M.P., M. Clerici, and G. Lucchini. 2003. The S-phase checkpoint and its regulation in Saccharomyces cerevisiae. Mutat. Res. 532, 41–58.

    PubMed  CAS  Google Scholar 

  • Muller, R., D. Mumberg, and F.C. Lucibello. 1993. Signals and genes in the control of cell-cycle progression. Biochim. Biophys. Acta 1155, 151–179.

    PubMed  CAS  Google Scholar 

  • Nordlund, P. and P. Reichard. 2006. Ribonucleotide reductases. Annu. Rev. Biochem. 75, 681–706.

    Article  PubMed  CAS  Google Scholar 

  • North, T.W., R.K. Bestwick, and C.K. Mathews. 1980. Detection of activities that interfere with the enzymatic assay of deoxyribonucleoside 5’-triphosphates. J. Biol. Chem. 255, 6640–6645.

    PubMed  CAS  Google Scholar 

  • Perkins, E., J.F. Sterling, V.I. Hashem, and M.A. Resnick. 1999. Yeast and human genes that affect the Escherichia coli SOS response. Proc. Natl. Acad. Sci. USA 96, 2204–2209.

    Article  PubMed  CAS  Google Scholar 

  • Rouse, J. and S.P. Jackson. 2000. LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signaling pathway in Saccharomyces cerevisiae. EMBO J. 19, 5801–5812.

    Article  PubMed  CAS  Google Scholar 

  • Sikorski, R. and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.

    PubMed  CAS  Google Scholar 

  • Thomas, B.J. and R. Rothstein. 1989. The genetic control of directrepeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123, 725–738.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., K. Yang, C.C. Chen, J. Feser, and M. Huang. 2007. Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1. Proc. Natl. Acad. Sci. USA 104, 2217–2222.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., E.G.D. Muller, and R. Rothstein. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., A. Chabes, V. Domkin, L. Thelander, and R. Rothstein. 2001. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 20, 3544–3553.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X. and R. Rothstein. 2002. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc. Natl. Acad. Sci. USA 99, 3746–3751.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Ho Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, DH., Oh, YM., Kwon, SH. et al. The mutation of a novel Saccharomyces cerevisiae SRL4 gene rescues the Lethality of rad53 and lcd1 mutations by modulating dNTP levels. J Microbiol. 46, 75–80 (2008). https://doi.org/10.1007/s12275-008-0013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0013-6

Keywords

Navigation