Skip to main content
Log in

Tailored ZnF2/ZnS-rich interphase for reversible aqueous Zn batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The urgent need for highly safe and sustainable large-scale energy storage systems for residential buildings has led to research into aqueous zinc ion batteries. However, when zinc is used in aqueous zinc ion batteries, it suffers from severe irreversibility due to its low Coulombic efficiency, dendrite growth, and side reactions. To address these challenges, we take advantage of organic cation to induce trifluoromethanesulfonate decomposition to build zinc fluoride/zinc sulfide-rich solid electrolyte interphase (SEI) that not only can adapt to a high areal capacity of deposition/stripping disturbance but also adjust zinc ion deposition path to eliminate dendrite. As a result, the unique interface can promote the Zn battery to achieve excellent electrochemical performance: high levels of plating/stripping Coulombic efficiency (99.8%), stability life (6,600 h), and cumulative capacity (66,000 mAh·cm−2) at 68% zinc utilization (20 mAh·cm−2). More importantly, the SEI significantly enhances the cyclability of full battery under limited Zn, lean electrolyte, and high areal capacity cathode conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. X.; Sun, Z. H.; Li, J.; Shi, Y.; Sun, C. G.; An, B. G.; Cheng, H. M.; Li, F. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev. 2021, 50, 3178–3210.

    CAS  Google Scholar 

  2. Dong, H.; Tutusaus, O.; Liang, Y. L.; Zhang, Y.; Lebens-Higgins, Z.; Yang, W. L.; Mohtadi, R.; Yao, Y. High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 2020, 5, 1043–1050.

    CAS  Google Scholar 

  3. Wang, W. L.; Gang, Y.; Hu, Z.; Yan, Z. C.; Li, W. J.; Li, Y. C.; Gu, Q. F.; Wang, Z. X.; Chou, S. L.; Liu, H. K. et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun. 2020, 11, 980.

    CAS  Google Scholar 

  4. Ma, L. T.; Chen, S. M.; Li, N.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Chen, S. M.; Fan, J.; Zhi, C. Y. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 2020, 32, 1908121.

    CAS  Google Scholar 

  5. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

    CAS  Google Scholar 

  6. Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587.

    Google Scholar 

  7. Zhang, H.; Liu, X.; Li, H. H.; Hasa, I.; Passerini, S. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 598–616.

    Google Scholar 

  8. Chen, T. T.; Wang, F. F.; Cao, S.; Bai, Y.; Zheng, S. S.; Li, W. T.; Zhang, S. T.; Hu, S. X.; Pang, H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv. Mater. 2022, 34, 2201779.

    CAS  Google Scholar 

  9. Gao, S. S.; Chen, S. S.; Liu, Q.; Zhang, S. S.; Qi, G. C.; Luo, J.; Liu, X. J. Bifunctional BiPd alloy particles anchored on carbon matrix for reversible Zn-CO2 battery. ACS Appl. Nano Mater. 2022, 5, 12387–12394.

    CAS  Google Scholar 

  10. Liu, S.; Jin, M. M.; Sun, J. Q.; Qin, Y. J.; Gao, S. S.; Chen, Y.; Zhang, S. S.; Luo, J.; Liu, X. J. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst. Chem. Eng. J. 2022, 437, 135294.

    CAS  Google Scholar 

  11. Liu, W. X.; Feng, J. X.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, Y.; Luo, J.; Liu, X. J. Active-site and interface engineering of cathode materials for aqueous Zn-gas batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-4929-7.

  12. Yu, H.; Zeng, Y. X.; Li, N. W.; Luan, D. Y.; Yu, L.; Lou, X. W. Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Sci. Adv. 2022, 8, eabm5766.

    Google Scholar 

  13. Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz, M. F.; Long, J. W.; Rolison, D. R. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to nickel-zinc. Science 2017, 356, 415–418.

    CAS  Google Scholar 

  14. Zampardi, G.; La Mantia, F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 2022, 13, 687.

    CAS  Google Scholar 

  15. Liu, Z. X.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180–232.

    CAS  Google Scholar 

  16. Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2020, 14, 868–878.

    Google Scholar 

  17. Shan, Y. Y.; Li, Y.; Pang, H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2001298.

    CAS  Google Scholar 

  18. Chen, T. T.; Bai, Y.; Xiao, X.; Pang, H. Exposing (001) crystal facet on the single crystalline β-Ni(OH)2 quasi-nanocubes for aqueous Ni-Zn batteries. Chem. Eng. J. 2021, 413, 127523.

    CAS  Google Scholar 

  19. Wang, C.; Li, J.; Zhou, Z.; Pan, Y. Q.; Yu, Z. X.; Pei, Z. X.; Zhao, S. L.; Wei, L.; Chen, Y. Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem 2021, 3, 100055.

    CAS  Google Scholar 

  20. He, B.; Zhang, Q. C.; Man, P.; Zhou, Z. Y.; Li, C. W.; Li, Q. L.; Xie, L. Y.; Wang, X. N.; Pang, H.; Yao, Y. G. Self-sacrificed synthesis of conductive vanadium-based metal-organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-ion batteries. Nano Energy 2019, 64, 103935.

    CAS  Google Scholar 

  21. Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 2022, 1, e9120025.

    Google Scholar 

  22. Liu, S.; Wang, L.; Yang, H.; Gao, S. S.; Liu, Y. F.; Zhang, S. S.; Chen, Y.; Liu, X. J.; Luo, J. Nitrogen-doped carbon polyhedrons confined Fe-P nanocrystals as high-efficiency bifunctional catalysts for aqueous Zn-CO2 batteries. Small 2022, 18, 2104965.

    CAS  Google Scholar 

  23. Gao, S. S.; Wei, T. R.; Sun, J. Q.; Liu, Q.; Ma, D.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Struct., in press, https://doi.org/10.1002/sstr.202200086.

  24. Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, e9120009.

    Google Scholar 

  25. Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.

    CAS  Google Scholar 

  26. Hao, J. N.; Li, X. L.; Zeng, X. H.; Li, D.; Mao, J. F.; Guo, Z. P. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 2020, 13, 3917–3949.

    CAS  Google Scholar 

  27. Zeng, Y. X.; Lu, X. F.; Zhang, S. L.; Luan, D. Y.; Li, S.; Lou, X. W. Construction of Co-Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 22189–22194.

    CAS  Google Scholar 

  28. Du, Y. H.; Wang, X. Y.; Sun, J. C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2021, 14, 754–761.

    CAS  Google Scholar 

  29. Chen, X. H.; Ruan, P. C.; Wu, X. W.; Liang, S. Q.; Zhou, J. Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries. Acta Phys. Chim. Sin. 2022, 38, 2111003.

    Google Scholar 

  30. Ruan, P. C.; Xu, X. L.; Zheng, D.; Chen, X. H.; Yin, X. Y.; Liang, S. Q.; Wu, X. W.; Shi, W. H.; Cao, X. H.; Zhou, J. Promoting reversible dissolution/deposition of MnO2 for high-energy-density zinc batteries via enhancing cut-off voltage. ChemSusChem 2022, 15, e202201118.

    CAS  Google Scholar 

  31. Shin, J.; Lee, J.; Park, Y.; Choi, J. W. Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 2020, 11, 2028–2044.

    Google Scholar 

  32. Cao, L. S.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C. Y.; Chen, L.; Vatamanu, J.; Hu, E. Y.; Hourwitz, M. J. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 2021, 16, 902–910.

    CAS  Google Scholar 

  33. Bayer, M.; Overhoff, G. M.; Gui, A. L.; Winter, M.; Bieker, P.; Schulze, S. Influence of water content on the surface morphology of zinc deposited from EMImOTf/water mixtures. J. Electrochem. Soc. 2019, 166, A909–A914.

    CAS  Google Scholar 

  34. Higashi, S.; Lee, S. W.; Lee, J. S.; Takechi, K.; Cui, Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 2016, 7, 11801.

    Google Scholar 

  35. Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

    CAS  Google Scholar 

  36. Chu, Y. Z.; Zhang, S.; Wu, S.; Hu, Z. L.; Cui, G. L.; Luo, J. Y. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 2021, 14, 3609–3620.

    CAS  Google Scholar 

  37. Qiu, H. Y.; Du, X. F.; Zhao, J. W.; Wang, Y. T.; Ju, J. W.; Chen, Z.; Hu, Z. L.; Yan, D. P.; Zhou, X. H.; Cui, G. L. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 2019, 10, 5374.

    Google Scholar 

  38. Zhang, Q.; Ma, Y. L.; Lu, Y.; Li, L.; Wan, F.; Zhang, K.; Chen, J. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 2020, 11, 4463.

    CAS  Google Scholar 

  39. Chen, Z.; Tang, Y.; Du, X. F.; Chen, B. B.; Lu, G. L.; Han, X. Q.; Zhang, Y. J.; Yang, W. H.; Han, P. X.; Zhao, J. W. et al. Anion solvation reconfiguration enables high-voltage carbonate electrolytes for stable Zn/graphite cells. Angew. Chem., Int. Ed. 2020, 59, 21769–21777.

    CAS  Google Scholar 

  40. Ma, L.; Pollard, T. P.; Zhang, Y.; Schroeder, M. A.; Ding, M. S.; Cresce, A. V.; Sun, R. M.; Baker, D. R.; Helms, B. A.; Maginn, E. J. et al. Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew. Chem., Int. Ed. 2021, 60, 12438–12445.

    CAS  Google Scholar 

  41. Lv, Y. Q.; Zhao, M.; Du, Y. D.; Kang, Y.; Xiao, Y.; Chen, S. M. Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 2022, 15, 4748–4760.

    CAS  Google Scholar 

  42. Cao, F. Q.; Wu, B. H.; Li, T. Y.; Sun, S. T.; Jiao, Y. C.; Wu, P. Y. Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance. Nano Res. 2022, 15, 2030–2039.

    CAS  Google Scholar 

  43. Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

    CAS  Google Scholar 

  44. Zhao, Z. D.; Wang, R.; Peng, C. X.; Chen, W. J.; Wu, T. Q.; Hu, B.; Weng, W. J.; Yao, Y.; Zeng, J. X.; Chen, Z. H. et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 2021, 12, 6606.

    CAS  Google Scholar 

  45. Zhang, L.; Zhang, B.; Zhang, T.; Li, T.; Shi, T. F.; Li, W.; Shen, T.; Huang, X. X.; Xu, J. J.; Zhang, X. G. et al. Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries. Adv. Funct. Mater. 2021, 31, 2100186.

    CAS  Google Scholar 

  46. Hao, J. N.; Li, B.; Li, X. L.; Zeng, X. H.; Zhang, S. L.; Yang, F. H.; Liu, S. L.; Li, D.; Wu, C.; Guo, Z. P. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, 2003021.

    CAS  Google Scholar 

  47. Tian, H. J.; Li, Z.; Feng, G. X.; Yang, Z. Z.; Fox, D.; Wang, M. Y.; Zhou, H.; Zhai, L.; Kushima, A.; Du, Y. G. et al. Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat. Commun. 2021, 12, 237.

    CAS  Google Scholar 

  48. Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.

    CAS  Google Scholar 

  49. Fayette, M.; Chang, H. J.; Li, X. L.; Reed, D. High-performance InZn alloy anodes toward practical aqueous zinc batteries. ACS Energy Lett. 2022, 7, 1888–1895.

    CAS  Google Scholar 

  50. Li, Q. Y.; Chen, Y. J.; Wang, H.; Yu, H. M.; Wei, W. F.; Ji, X. B.; Qu, B. H.; Chen, L. B. Advances in the structure and composition design of zinc anodes for high performance zinc ion batteries. Sustainable Energy Fuels 2022, 6, 3501–3515.

    CAS  Google Scholar 

  51. Zhang, Q.; Ma, Y. L.; Lu, Y.; Zhou, X. Z.; Lin, L.; Li, L.; Yan, Z. H.; Zhao, Q.; Zhang, K.; Chen, J. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem., Int. Ed. 2021, 60, 23357–23364.

    CAS  Google Scholar 

  52. Naveed, A.; Yang, H. J.; Yang, J.; Nuli, Y.; Wang, J. L. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem., Int. Ed. 2019, 58, 2760–2764.

    CAS  Google Scholar 

  53. Naveed, A.; Yang, H. J.; Shao, Y. Y.; Yang, J.; Yanna, N.; Liu, J.; Shi, S. Q.; Zhang, L. W.; Ye, A. J.; He, B. et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries. Adv. Mater. 2019, 31, 1900668.

    Google Scholar 

  54. Ming, F. W.; Zhu, Y. P.; Huang, G.; Emwas, A. H.; Liang, H. F.; Cui, Y.; Alshareef, H. N. Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 2022, 144, 7160–7170.

    CAS  Google Scholar 

  55. Ma, Y. L.; Zhang, Q.; Liu, L. J.; Li, Y. X.; Li, H. X.; Yan, Z. H.; Chen, J. N, N-dimethylformamide tailors solvent effect to boost Zn anode reversibility in aqueous electrolyte. Natl. Sci. Rev., in press, https://doi.org/10.1093/nsr/nwac051.

  56. Bayaguud, A.; Luo, X.; Fu, Y. P.; Zhu, C. B. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 2020, 5, 3012–3020.

    CAS  Google Scholar 

  57. Liu, Y. J.; Tao, X. Y.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O. W.; Lu, G. X.; Lou, X. W. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375, 739–745.

    CAS  Google Scholar 

  58. Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

    CAS  Google Scholar 

  59. Chen, J. Z.; Zhou, W. J.; Quan, Y. H.; Liu, B.; Yang, M.; Chen, M. F.; Han, X.; Xu, X. W.; Zhang, P. X.; Shi, S. Q. Lonic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer. Energy Storage Mater. 2022, 53, 629–637.

    Google Scholar 

  60. Liu, Z.; El Abedin, S. Z.; Endres, F. Electrodeposition of zinc films from ionic liquids and ionic liquid/water mixtures. Electrochim. Acta 2013, 89, 635–643.

    CAS  Google Scholar 

  61. Liu, Z.; El Abedin, S. Z.; Borisenko, N.; Endres, F. Influence of an additive on zinc electrodeposition in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate. ChemElectroChem 2015, 2, 1159–1163.

    CAS  Google Scholar 

  62. Ma, L.; Vatamanu, J.; Hahn, N. T.; Pollard, T. P.; Borodin, O.; Petkov, V.; Schroeder, M. A.; Ren, Y.; Ding, M. S.; Luo, C. et al. Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc. Natl. Acad. Sci. USA 2022, 119, e2121138119.

    CAS  Google Scholar 

  63. Shan, L. T.; Zhou, J.; Zhang, W. Y.; Xia, C. T.; Guo, S.; Ma, X. M.; Fang, G. Z.; Wu, X. W.; Liang, S. Q. Highly reversible phase transition endows V6O13 with enhanced performance as aqueous zinc-ion battery cathode. Energy Technol. 2019, 7, 1900022.

    Google Scholar 

  64. Ghanbari, K.; Mousavi, M. F.; Shamsipur, M. Preparation of polyaniline nanofibers and their use as a cathode of aqueous rechargeable batteries. Electrochim. Acta 2006, 52, 1514–1522.

    CAS  Google Scholar 

  65. Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J. Chem. Phys. 2002, 117, 43–54.

    CAS  Google Scholar 

  66. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J. Phys. Chem. B 2009, 113, 4538–4543.

    CAS  Google Scholar 

  67. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.

    CAS  Google Scholar 

  68. Zhao, Y.; Truhlar, D. G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 2008, 41, 157–167.

    CAS  Google Scholar 

  69. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654.

    CAS  Google Scholar 

  70. McLean, A.; Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11−18. J. Chem. Phys. 1980, 72, 5639–5648.

    CAS  Google Scholar 

  71. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141.

    CAS  Google Scholar 

  72. Igel-Mann, G.; Stoll, H.; Preuss, H. Pseudopotentials for main group elements (IIIa through VIIa). Mol. Phys. 1988, 65, 1321–1328.

    CAS  Google Scholar 

  73. Bauernschmitt, R.; Ahlrichs, R. Stability analysis for solutions of the closed shell Kohn—Sham equation. J. Chem. Phys. 1996, 104, 9047–9052.

    CAS  Google Scholar 

  74. Zhao, K.; Fan, G. L.; Liu, J. D.; Liu, F. M.; Li, J. H.; Zhou, X. Z.; Ni, Y. X.; Yu, M.; Zhang, Y. M.; Su, H. et al. Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 2022, 144, 11129–11137.

    CAS  Google Scholar 

  75. Zhao, K.; Liu, F. M.; Fan, G. L.; Liu, J. D.; Yu, M.; Yan, Z. H.; Zhang, N.; Cheng, F. Y. Stabilizing zinc electrodes with a vanillin additive in mild aqueous electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 47650–47658.

    CAS  Google Scholar 

  76. Li, Q.; Chen, A.; Wang, D. H.; Pei, Z. X.; Zhi, C. Y. “Soft shorts” hidden in zinc metal anode research. Joule 2022, 6, 273–279.

    Google Scholar 

  77. Xu, W. N.; Zhao, K. N.; Huo, W. C.; Wang, Y. Z.; Yao, G.; Gu, X.; Cheng, H. W.; Mai, L. Q.; Hu, C. G.; Wang, X. D. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 2019, 62, 275–281.

    CAS  Google Scholar 

  78. Wang, Z. Q.; Hu, J. T.; Han, L.; Wang, Z. J.; Wang, H. B.; Zhao, Q. H.; Liu, J. J.; Pan, F. A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 2019, 56, 92–99.

    CAS  Google Scholar 

  79. Zhao, J. W.; Zhang, J.; Yang, W. H.; Chen, B. B.; Zhao, Z. M.; Qiu, H. Y.; Dong, S. M.; Zhou, X. H.; Cui, G. L.; Chen, L. Q. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 2019, 57, 625–634.

    CAS  Google Scholar 

  80. Zhang, C.; Holoubek, J.; Wu, X. Y.; Daniyar, A.; Zhu, L. D.; Chen, C.; Leonard, D. P.; Rodríguez-Pérez, I. A.; Jiang, J. X.; Fang, C. et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. (Camb.) 2018, 54, 14097–14099.

    CAS  Google Scholar 

  81. Cui, Y. H.; Zhao, Q. H.; Wu, X. J.; Wang, Z. J.; Qin, R. Z.; Wang, Y. T.; Liu, M. Q.; Song, Y. L.; Qian, G. Y.; Song, Z. B. et al. Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Mater. 2020, 27, 1–8.

    CAS  Google Scholar 

  82. Zeng, X. H.; Liu, J. T.; Mao, J. F.; Hao, J. N.; Wang, Z. J.; Zhou, S.; Ling, C. D.; Guo, Z. P. Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry. Adv. Energy Mater. 2020, 10, 1904163.

    CAS  Google Scholar 

  83. Zhu, Y. P.; Yin, J.; Zheng, X. L.; Emwas, A. H.; Lei, Y. J.; Mohammed, O. F.; Cui, Y.; Alshareef, H. N. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 2021, 14, 4463–4473.

    CAS  Google Scholar 

  84. Sun, P.; Ma, L.; Zhou, W. H.; Qiu, M. J.; Wang, Z. L.; Chao, D. L.; Mai, W. J. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem., Int. Ed. 2021, 60, 18247–18255.

    CAS  Google Scholar 

  85. Huang, C.; Zhao, X.; Liu, S.; Hao, Y. S.; Tang, Q. L.; Hu, A. P.; Liu, Z. X.; Chen, X. H. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 2021, 33, 2100445.

    CAS  Google Scholar 

  86. Zhang, S. J.; Hao, J. N.; Luo, D.; Zhang, P. F.; Zhang, B. K.; Davey, K.; Lin, Z.; Qiao, S. Z. Dual-function electrolyte additive for highly reversible Zn anode. Adv. Energy Mater. 2021, 11, 2102010.

    CAS  Google Scholar 

  87. Qin, R. Z.; Wang, Y. T.; Zhang, M. Z.; Wang, Y.; Ding, S. X.; Song, A. Y.; Yi, H. C.; Yang, L. Y.; Song, Y. L.; Cui, Y. H. et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 2021, 80, 105478.

    CAS  Google Scholar 

  88. Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. A. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.

    CAS  Google Scholar 

  89. Yang, Y.; Liu, C. Y.; Lv, Z. H.; Yang, H.; Zhang, Y. F.; Ye, M. H.; Chen, L. B.; Zhao, J. B.; Li, C. C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 2021, 33, 2007388.

    CAS  Google Scholar 

  90. Li, F.; He, J.; Liu, J. D.; Wu, M. G.; Hou, Y. Y.; Wang, H. P.; Qi, S. H.; Liu, Q. H.; Hu, J. W.; Ma, J. M. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 6600–6608.

    CAS  Google Scholar 

  91. Bouibes, A.; Takenaka, N.; Kubota, K.; Komaba, S.; Nagaoka, M. Development of advanced electrolytes in Na-ion batteries: Application of the red moon method for molecular structure design of the SEI layer. RSC Adv. 2022, 12, 971–984.

    CAS  Google Scholar 

  92. Xiao, N.; Gourdin, G.; Wu, Y. Y. Simultaneous stabilization of potassium metal and superoxide in K-O2 batteries on the basis of electrolyte reactivity. Angew. Chem., Int. Ed. 2018, 57, 10864–10867.

    CAS  Google Scholar 

  93. Chen, Y.; Cao, Y. Y.; Shi, Y.; Xue, Z. M.; Mu, T. C. Quantitative research on the vaporization and decomposition of [Tf2N] by thermogravimetric analysis-mass spectrometry. Ind. Eng. Chem. Res. 2012, 51, 7418–7427.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 2227912129) and Joint Fund of Scientific and Technological Research and Development Program of Henan Province (No. 222301420009). The Center of Advanced Analysis & Gene Sequencing of Zhengzhou University was thanked for Cryo-TEM testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Chen or Bingan Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, J., Zhang, Y., Xie, Z. et al. Tailored ZnF2/ZnS-rich interphase for reversible aqueous Zn batteries. Nano Res. 16, 4996–5005 (2023). https://doi.org/10.1007/s12274-022-5325-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5325-z

Keywords

Navigation