Skip to main content
Log in

A novel SAXS/XRD/XAFS combined technique for in-situ time-resolved simultaneous measurements

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Synchrotron radiation based combined technique can provide multiple structural information simultaneously, which is an important development direction of structural detection. In this study, a novel small-angle X-ray scattering/X-ray diffraction/X-ray absorption fine structure (SAXS/XRD/XAFS) combined setup was constructed, where an area detector, a curved detector, and a point detector are, respectively, used for the measurements of SAXS, XRD, and XAFS signals. A detailed description about the combined setup was given. A minitype diamond detector coupled to a SAXS beamstop was used to record the transmitted X-ray intensity, making the scattering (SAXS and XRD) signal measurement compatible with the absorption (XAFS) signal measurement, avoiding mechanical switching. The two-way sampling strategy was used to acquire XAFS signals, shortening the non-counting time. The two-way and one-way sampling strategies were discussed. High-frequency sampling scheme was used to collect experimental signals, improving the measurement efficiency and signal-to-noise ratio. A detailed description and discussion about the high-frequency scheme were also given in this paper. Except the rotation of monochromator, there is no mechanical movement in measurements, time resolution may reach the level of seconds. Using this SAXS/XRD/XAFS combined setup, SAXS, XRD, and XAFS signals can be acquired simultaneously. With some in-situ sample environment system, the newly-developed combined technique can be used to track the structure evolution in complex fluids. During the formation processes of (BiO)2CO3 and ZnAPO-34 particles, the changes of in-situ experimental data with reaction time demonstrate that SAXS/XRD/XAFS combined technique is feasible to track the dynamic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, M. M.; Palkar, V. R.; Srinivas, K.; Suryanarayana, S. V. Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 2000, 76, 2764–2766.

    Article  CAS  Google Scholar 

  2. Neri, G.; Bonavita, A.; Rizzo, G.; Galvagno, S.; Pinna, N.; Niederberger, M.; Capone, S.; Siciliano, P. Towards enhanced performances in gas sensing: SnO2 based nanocrystalline oxides application. Sensors Actuat. B Chem. 2007, 122, 564–571.

    Article  CAS  Google Scholar 

  3. Mammeri, F.; Le Bourhis, E.; Rozes, L.; Sanchez, C. Mechanical properties of hybrid organic-inorganic materials. J. Mater. Chem. 2005, 15, 3787–3811.

    Article  CAS  Google Scholar 

  4. Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.

    Article  CAS  Google Scholar 

  5. Liu, Y. P.; Sheng, W. F.; Wu, Z. H. Synchrotron radiation and its applications progress in inorganic materials. J. Inorg. Mater. 2021, 36, 901–918.

    Article  Google Scholar 

  6. Wiedemann, H. Synchrotron radiation. In Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics II Nonlinear and Higher-Order Beam Dynamics; Springer: Berlin, Heidelberg, 2003; 647–686.

    Chapter  Google Scholar 

  7. Guinier, A.; Fournet, G.; Walker, C. B.; Vineyard, G. H. Small-angle scattering of X-rays. Phys. Today 1956, 9, 38.

    Article  Google Scholar 

  8. Warren, B. E. X-ray Diffraction; Dover Publications: New York, 1990.

    Google Scholar 

  9. Sun, Z. H.; Liu, Q. H.; Yao, T.; Yan, W. S.; Wei, S. Q. X-ray absorption fine structure spectroscopy in nanomaterials. Sci. China Mater. 2015, 58, 313–341.

    Article  CAS  Google Scholar 

  10. Wang, X. L.; Almer, J.; Liu, C. T.; Wang, Y. D.; Zhao, J. K.; Stoica, A. D.; Haeffner, D. R.; Wang, W. H. In situ synchrotron study of phase transformation behaviors in bulk metallic glass by simultaneous diffraction and small angle scattering. Phys. Rev. Lett. 2003, 91, 265501.

    Article  Google Scholar 

  11. Yao, T.; Sun, Z. H.; Li, Y. Y.; Pan, Z. Y.; Wei, H.; Xie, Y.; Nomura, M.; Niwa, Y.; Yan, W. S.; Wu, Z. Y. et al. Insights into initial kinetic nucleation of gold nanocrystals. J. Am. Chem. Soc. 2010, 132, 7696–7701.

    Article  CAS  Google Scholar 

  12. Farvid, S. S.; Radovanovic, P. V. Phase transformation of colloidal In2O3 nanocrystals driven by the interface nucleation mechanism: A kinetic study. J. Am. Chem. Soc. 2012, 134, 7015–7024.

    Article  CAS  Google Scholar 

  13. Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.

    Article  CAS  Google Scholar 

  14. Bras, W.; Derbyshire, G. E.; Ryan, A. J.; Mant, G. R.; Felton, A.; Lewis, R. A.; Hall, C. J.; Greaves, G. N. Simultaneous time resolved SAXS and WAXS experiments using synchrotron radiation. Nucl. Instrum. Meth. Phys. Res. Sect. A 1993, 326, 587–591.

    Article  Google Scholar 

  15. Daniels, J. E.; Pontoni, D.; Hoo, R. P.; Honkimäki, V. Simultaneous small- and wide-angle scattering at high X-ray energies. J. Synchrotron Radiat. 2010, 17, 473–478.

    Article  CAS  Google Scholar 

  16. Cats, K. H.; Weckhuysen, B. M. Combined operando X-ray diffraction/Raman spectroscopy of catalytic solids in the laboratory: The Co/TiO2 fischer-tropsch synthesis catalyst showcase. ChemCatChem 2016, 8, 1531–1542.

    Article  CAS  Google Scholar 

  17. Bentrup, U. Combining in situ characterization methods in one set-up: Looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts. Chem. Soc. Rev. 2010, 39, 4718–4730.

    Article  CAS  Google Scholar 

  18. Patlolla, A.; Carino, E. V.; Ehrlich, S. N.; Stavitski, E.; Frenkel, A. I. Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts. ACS Catal. 2012, 2, 2216–2223.

    Article  CAS  Google Scholar 

  19. Newton, M. A.; Van Beek, W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: A view from a bridge. Chem. Soc. Rev. 2010, 39, 4845–4863.

    Article  CAS  Google Scholar 

  20. Couves, J. W.; Thomas, J. M.; Waller, D.; Jones, R. H.; Dent, A. J.; Derbyshire, G. E.; Greaves, G. N. Tracing the conversion of aurichalcite to a copper catalyst by combined X-ray absorption and diffraction. Nature 1991, 354, 465–468.

    Article  CAS  Google Scholar 

  21. Sankar, G.; Thomas, J. M. In situ combined X-ray absorption spectroscopic and X-ray diffractometric studies of solid catalysts. Top. Catal. 1999, 8, 1–21.

    Article  CAS  Google Scholar 

  22. Povia, M.; Herranz, J.; Binninger, T.; Nachtegaal, M.; Diaz, A.; Kohlbrecher, J.; Abbott, D. F.; Kim, B. J.; Schmidt, T. J. Combining SAXS and XAS to study the operando degradation of carbon-supported Pt-nanoparticle fuel cell catalysts. ACS Catal. 2018, 8, 7000–7015.

    Article  CAS  Google Scholar 

  23. Grandjean, D.; Beale, A. M.; Petukhov, A. V.; Weckhuysen, B. M. Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions. J. Am. Chem. Soc. 2005, 127, 14454–14465.

    Article  CAS  Google Scholar 

  24. Alétru, C.; Greaves, G. N.; Sankar, G.; Kempson, V. Combining in situ XAFS, XRD and SAXS to follow the synthesis of cadmium oxide from a hydroxyl gel. Jpn. J. Appl. Phys. 1999, 38, 97–100.

    Article  Google Scholar 

  25. Greaves, G. N.; Alétru, C.; Sankar, G.; Catlow, C. R. A.; Kempson, V.; Colyer, L. In situ characterisation of semiconducting nanoparticles in zeolites with XRD, XAFS and SAXS. Jpn. J. Appl. Phys. 1999, 38, 202–205.

    Article  CAS  Google Scholar 

  26. Greaves, G. N.; Meneau, F.; Sankar, G. SAXS/WAXS and XAFS studies of zeolite stability. Nucl. Instr. Meth. Phys. Res. Sect. B 2003, 199, 98–105.

    Article  CAS  Google Scholar 

  27. Greaves, G. N.; Bras, W.; Oversluizen, M.; Clark, S. M. A SAXS/WAXS XAFS study of crystallisation in cordierite glass. Faraday Discuss 2002, 122, 299–314.

    Article  Google Scholar 

  28. Beale, A. M.; Van Der Eerden, A. M. J.; Jacques, S. D. M.; Leynaud, O.; O’Brien, M. G.; Meneau, F.; Nikitenko, S.; Bras, W.; Weckhuysen, B. M. A combined SAXS/WAXS/XAFS setup capable of observing concurrent changes across the nano-to-micrometer size range in inorganic solid crystallization processes. J. Am. Chem. Soc. 2006, 128, 12386–12387.

    Article  CAS  Google Scholar 

  29. Nikitenko, S.; Beale, A. M.; Van Der Eerden, A. M. J.; Jacques, S. D. M, Leynaud, O.; O’Brien, M. G.; Detollenaere, D.; Kaptein, R.; Weckhuysen, B. M.; Bras, W. Implementation of a combined SAXS/WAXS/QEXAFS set-up for time-resolved in situ experiments. J. Synchrotron Radiat. 2008, 15, 632–640.

    Article  CAS  Google Scholar 

  30. Bras, W.; Nikitenko, S.; Portale, G.; Beale, A.; Eerden, A. V. D.; Detollenaere, D. Combined time-resolved SAXS and X-ray spectroscopy methods. J. Phys.:Conf. Ser. 2010, 247, 012047.

    Google Scholar 

  31. Beale, A. M.; O’Brien, M. G.; Kasunič, M.; Golobič, A.; Sanchez-Sanchez, M.; Lobo, A. J. W.; Lewis, D. W.; Wragg, D. S.; Nikitenko, S.; Bras, W. et al. Probing ZnAPO-34 self-assembly using simultaneous multiple in situ techniques. J. Phys. Chem. C 2011, 115, 6331–6340.

    Article  CAS  Google Scholar 

  32. Tang, E. S.; Xian, D. C. Beijing Synchrotron Radiation Facility (BSRF) status. Rev. Sci. Instrum. 1992, 63, 1575–1577.

    Article  Google Scholar 

  33. Yao, L.; Liu, Y. P.; Wang, B. J.; Qian, L. X.; Xing, X. Q.; Mo, G.; Chen, Z. J.; Wu, Z. H. A polycrystalline diamond micro-detector for X-ray absorption fine structure measurements. J. Synchrotron Rad. 2022, 29, 424–430.

    Article  CAS  Google Scholar 

  34. Liu, Y. P.; Yao, L.; Wang, B. J.; Zhong, J. J.; Wang, H.; Qian, L. X.; Chen, Z. J.; Mo, G.; Xing, X. Q.; Sheng, W. F. et al. Silicon PIN photodiode applied to acquire high-frequency sampling XAFS spectra. Nucl. Sci. Tech. 2022, 33, 91.

    Article  CAS  Google Scholar 

  35. Liu, Y. P.; Qian, L. X.; Zhao, X. Y.; Wang, J. Y.; Yao, L.; Xing, X. Q.; Mo, G.; Cai, Q.; Chen, Z. J.; Wu, Z. H. Synthesis and formation mechanism of self-assembled 3D flower-like Bi/γ-Fe2O3 composite particles. CrystEngComm 2019, 21, 2799–2808.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (Nos. 2017YFA0403000 and 2017YFA0403100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liu, Y., Xing, X. et al. A novel SAXS/XRD/XAFS combined technique for in-situ time-resolved simultaneous measurements. Nano Res. 16, 1123–1131 (2023). https://doi.org/10.1007/s12274-022-4742-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4742-3

Keywords

Navigation