Skip to main content
Log in

Efficient visible-light-driven water oxidation by single-crystal Ta3N5 nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ta3N5 is regarded as a promising photocatalyst for solar water splitting because of its excellent visible light absorption characteristics and simple composition. Conventional Ta3N5 photocatalysts prepared from oxide precursors typically comprise aggregated polycrystalline particles with defects and grain boundaries that reduce the water oxidation activity of the material. In the present work, well-dispersed Ta3N5 nanoparticulate single crystals were synthesized via a mild nitridation process using pure Ta metal nanopowder or Ta nanopowder mixed with NaCl. The resulting high-quality Ta3N5 nanoparticles, after loading with an oxygen evolution cocatalyst, exhibited impressively high photocatalytic performance during O2 evolution from a sacrificial AgNO3 solution, with an apparent quantum yield of 9.4% at 420 nm. Our findings suggest a new approach to the facile fabrication of nanostructured single-crystal photocatalysts for efficient solar water splitting, based on the use of metal nanopowders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.

    Article  CAS  Google Scholar 

  2. Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.

    Article  CAS  Google Scholar 

  3. Zhang, H. B.; Zuo, S. W.; Qiu, M.; Wang, S. B.; Zhang, Y. F.; Zhang, J.; Lou, X. W. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eabb9823.

    Article  CAS  Google Scholar 

  4. Xu, G. L.; Zhang, H. B.; Wei, J.; Zhang, H. X.; Wu, X.; Li, Y.; Li, C. S.; Zhang, J.; Ye, J. H. Integrating the g-C3N4 nanosheet with B-H bonding decorated metal-organic framework for CO2 activation and photoreduction. ACS Nano 2018, 12, 5333–5340.

    Article  CAS  Google Scholar 

  5. Wang, Y. O.; Suzuki, H.; Xie, J. J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. W. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 2018, 118, 5201–5241.

    Article  CAS  Google Scholar 

  6. Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. Highly efficient photocatalytic conversion of CO2 into solid CO using H2O as a reductant over Ag-modified ZnGa2O4. J. Mater. Chem. A 2015, 3, 11313–11319.

    Article  CAS  Google Scholar 

  7. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  CAS  Google Scholar 

  8. Zhan, X. Q.; Fang, Z.; Li, B.; Zhang, H. T.; Xu, L. Y.; Hou, H. L.; Yang, W. Y. Rationally designed Ta3N5@ReS2 heterojunctions for promoted photocatalytic hydrogen production. J. Mater. Chem. A 2021, 9, 27084–27094.

    Article  CAS  Google Scholar 

  9. Zhan, X. Q.; Zheng, Y. P.; Li, B.; Fang Z.; Yang, H. L.; Zhang, H. T.; Xu, L. Y.; Shao, G.; Hou, H. L.; Yang, W. Y. Rationally designed Ta3N5/ZnIn2S4 1D/2D heterojunctions for boosting visible-light-driven hydrogen evolution. Chem. Eng. J. 2022, 431, 134053.

    Article  CAS  Google Scholar 

  10. Qi, Y.; Chen, S. S.; Li, M. R.; Ding, Q.; Li, Z.; Cui, J. Y.; Dong, B. B.; Zhang, F. X.; Li, C. Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst. Chem. Sci. 2017, 8, 437–443.

    Article  CAS  Google Scholar 

  11. Hou, J. G.; Wu, Y. Z.; Cao, S. Y.; Liang, F.; Lin, Z. S.; Gao, Z. M.; Sun, L. C. In situ phase-induced spatial charge separation in core-shell oxynitride nanocube heterojunctions realizing robust solar water splitting. Adv. Energy Mater. 2017, 7, 1700171.

    Article  Google Scholar 

  12. Nurlaela, E.; Ould-Chikh, S.; Llorens, I.; Hazemann, J. L.; Takanabe, K. Establishing efficient cobalt-based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst. Chem. Mater. 2015, 27, 5685–5694.

    Article  CAS  Google Scholar 

  13. Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S. S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763.

    Article  CAS  Google Scholar 

  14. Tabata, M.; Maeda, K.; Higashi, M.; Lu, D. L.; Takata, T.; Abe, R.; Domen, K. Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 2010, 26, 9161–9165.

    Article  CAS  Google Scholar 

  15. Ma, S. S. K.; Maeda, K.; Hisatomi, T.; Tabata, M.; Kudo, A.; Domen, K. A redox-mediator-free solar-driven Z-scheme watersplitting system consisting of modified Ta3N5 as an oxygen-evolution photocatalyst. Chem.—Eur. J. 2013, 19, 7480–7486.

    Article  CAS  Google Scholar 

  16. Liu, G. J.; Ye, S.; Yan, P. L.; Xiong, F. Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 2016, 9, 1327–1334.

    Article  CAS  Google Scholar 

  17. Zhong, M.; Hisatomi, T.; Sasaki, Y.; Suzuki, S.; Teshima, K.; Nakabayashi, M.; Shibata, N.; Nishiyama, H.; Katayama, M.; Yamada, T. et al. Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation. Angew. Chem., Int. Ed. 2017, 56, 4739–4743.

    Article  CAS  Google Scholar 

  18. Ma, S. S. K.; Hisatomi, T.; Maeda, K.; Moriya, Y.; Domen, K. Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J. Am. Chem. Soc. 2012, 134, 19993–19996.

    Article  CAS  Google Scholar 

  19. Chen, S. S.; Shen, S.; Liu, G. J.; Qi, Y.; Zhang, F. X.; Li, C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew. Chem., Int. Ed. 2015, 54, 3047–3051.

    Article  CAS  Google Scholar 

  20. Suzuki, S.; Ando, R.; Matsui, Y.; Isechi, K.; Yubuta, K.; Teshima, K. Prismatic Ta3N5-composed spheres produced by self-sacrificial template-like conversion of Ta particles via Na2CO3 flux. CrystEngComm 2020, 22, 5122–5129.

    Article  CAS  Google Scholar 

  21. Xiao, J. D.; Vequizo, J. J. M.; Hisatomi, T.; Rabeah, J.; Nakabayashi, M.; Wang, Z.; Xiao, Q.; Li, H. H.; Pan, Z. H.; Krause, M. et al. Simultaneously tuning the defects and surface properties of Ta3N5 nanoparticles by Mg-Zr codoping for significantly accelerated photocatalytic H2 evolution. J. Am. Chem. Soc. 2021, 143, 10059–10064.

    Article  CAS  Google Scholar 

  22. Wang, D. A.; Hisatomi, T.; Takata, T.; Pan, C. S.; Katayama, M.; Kubota, J.; Domen, K. Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew. Chem., Int. Ed. 2013, 52, 11252–11256.

    Article  CAS  Google Scholar 

  23. Zhang, F. X.; Yamakata, A.; Maeda, K.; Moriya, Y.; Takata, T.; Kubota, J.; Teshima, K.; Oishi, S.; Domen, K. Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J. Am. Chem. Soc. 2012, 134, 8348–8351.

    Article  CAS  Google Scholar 

  24. Jadhav, S.; Hasegawa, S.; Hisatomi, T.; Wang, Z.; Seo, J.; Higashi, T.; Katayama, M.; Minegishi, T.; Takata, T.; Peralta-Hernández, J. M. et al. Efficient photocatalytic oxygen evolution using BaTaO2N obtained from nitridation of perovskite-type oxide. J. Mater. Chem. A 2020, 8, 1127–1130.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization (NEDO). Part of this work was conducted at the Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by the “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (No. JPMXP09A-19-UT-0023). The authors thank Ms. Michiko Obata of Shinshu University for her assistance in XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Domen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Seo, J., Hisatomi, T. et al. Efficient visible-light-driven water oxidation by single-crystal Ta3N5 nanoparticles. Nano Res. 16, 4562–4567 (2023). https://doi.org/10.1007/s12274-022-4732-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4732-5

Keywords

Navigation