Skip to main content
Log in

Scorpion-inspired dual-bionic, microcrack-assisted wrinkle based laser induced graphene-silver strain sensor with high sensitivity and broad working range for wireless health monitoring system

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Scorpions, through ruthless survival of the fittest, evolve the unique ability to quickly locate and hunt prey with slit receptors near the leg joints and a sharp sting on the multi-freedom tail. Inspired by this fantastic creature, we herein report a dual-bionic strategy to fabricate microcrack-assisted wrinkle strain sensor with both high sensitivity and stretchability. Specifically, laser-induced graphene (LIG) is transferred from polyimide film to Ecoflex and then coated with silver paste using the casting-and-peeling and prestretch-and-release methods. The shape-adaptive and long-range ordered geometry (e.g., amplitude and wavelength) of dual-bionic structure is prestrain-tuned to optimize the superfast response time (∼ 76 ms), high sensitivity (gauge factor = 223.6), broad working range (70%–100%), and good reliability (> 800 cycles) of scorpion-inspired strain sensor, outperforming many LIG-based materials and other bionic sensors. The alternate reconnect/disconnect behaviors of slit-organ-like microcracks in the mechanical weak areas initiate tremendous resistance changes, whereas the scorpion-tail-like wrinkles act as a “bridge” connecting the adjacent LIG resistor units, enabling reversible resilience and unimpeded electrical linkages over a wide strain range. Combined with the self-developed miniaturized, flexible, and all-in-one wireless transmission system, a variety of scenarios such as large body movements, tiny pulse, and heartbeat are real-time monitored via bluetooth and displayed in the client-sides, revealing a huge promise in future wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y.; et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.

    Article  Google Scholar 

  2. Kim, K. K.; Ha, I.; Kim, M.; Choi, J.; Won, P.; Jo, S.; Ko, S. H. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 2020, 11, 2149.

    Article  CAS  Google Scholar 

  3. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  CAS  Google Scholar 

  4. Baldo, T. A.; de Lima, L. F.; Mendes, L. F.; de Araujo, W. R.; Paixão, T. R. L. C.; Coltro, W. K. T. Wearable and biodegradable sensors for clinical and environmental applications. ACS Appl. Electron. Mater. 2021, 3, 68–100.

    Article  CAS  Google Scholar 

  5. Song, H. L.; Zhang, J. Q.; Chen, D. B.; Wang, K. J.; Niu, S. C.; Han, Z. W.; Ren, L. Q. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale 2017, 9, 1166–1173.

    Article  CAS  Google Scholar 

  6. Rahimi, R.; Ochoa, M.; Yu, W. Y.; Ziaie, B. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 2015, 7, 4463–4470.

    Article  CAS  Google Scholar 

  7. Dallinger, A.; Keller, K.; Fitzek, H.; Greco, F. Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene. ACS Appl. Mater. Interfaces 2020, 12, 19855–19865.

    Article  CAS  Google Scholar 

  8. Shin, J.; Ko, J.; Jeong, S.; Won, P.; Lee, Y.; Kim, J.; Hong, S.; Jeon, N. L.; Ko, S. H. Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nat. Mater. 2021, 20, 100–107.

    Article  CAS  Google Scholar 

  9. Ma, J. H.; Wang, P.; Chen, H. Y.; Bao, S. J.; Chen, W.; Lu, H. B. Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl. Mater. Interfaces 2019, 11, 8527–8536.

    Article  CAS  Google Scholar 

  10. Sha, Y.; Yang, W. M.; Li, S. Y.; Yao, L. B.; Li, H. Y.; Cheng, L. S.; Yan, H.; Cao, W. Y.; Tan, J. Laser induced graphitization of PAN-based carbon fibers. RSC Adv. 2018, 8, 11543–11550.

    Article  CAS  Google Scholar 

  11. Wang, W. T.; Lu, L. S.; Xie, Y. X.; Wu, W. B.; Liang, R. X.; Li, Z. H. Controlling the laser induction and cutting process on polyimide films for kirigami-inspired supercapacitor applications. Sci. China Technol. Sci. 2021, 64, 651–661.

    Article  CAS  Google Scholar 

  12. Feng, B.; Jiang, X.; Zou, G. S.; Wang, W. G.; Sun, T. M.; Yang, H.; Zhao, G. L.; Dong, M. Y.; Xiao, Y.; Zhu, H. W. et al. Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking strategy. Adv. Funct. Mater. 2021, 31, 2102359.

    Article  CAS  Google Scholar 

  13. Kulyk, B.; Silva, B. F. R.; Carvalho, A. F.; Silvestre, S.; Fernandes, A. J. S.; Martins, R.; Fortunato, E.; Costa, F. M. Laser-induced graphene from paper for mechanical sensing. ACS Appl. Mater. Interfaces 2021, 13, 10210–10221.

    Article  CAS  Google Scholar 

  14. Kedambaimoole, V.; Kumar, N.; Shirhatti, V.; Nuthalapati, S.; Sen, P.; Nayak, M. M.; Rajanna, K.; Kumar, S. Laser-induced direct patterning of free-standing Ti3C2-MXene films for skin conformal tattoo sensors. ACS Sens. 2020, 5, 2086–2095.

    Article  CAS  Google Scholar 

  15. Carvalho, A. F.; Fernandes, A. J. S.; Leitão, C.; Deuermeier, J.; Marques, A. C.; Martins, R.; Fortunato, E.; Costa, F. M. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 2018, 28, 1805271.

    Article  Google Scholar 

  16. Groo, L.; Nasser, J.; Inman, D. J.; Sodano, H. A. Transfer printed laser induced graphene strain gauges for embedded sensing in fiberglass composites. Compos. Part B: Eng. 2021, 219, 108932.

    Article  CAS  Google Scholar 

  17. Gao, Y.; Li, Q.; Wu, R. Y.; Sha, J.; Lu, Y. F.; Xuan, F. Z. Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv. Funct. Mater. 2019, 29, 1806786.

    Article  Google Scholar 

  18. Wang, W. T.; Lu, L. S.; Xie, Y. X.; Li, Z. H.; Wu, W. B.; Liang, R. X.; Tang, Y. One-step laser induced conversion of a gelatin-coated polyimide film into graphene: Tunable morphology, surface wettability and microsupercapacitor applications. Sci. China Technol. Sci. 2021, 64, 1030–1040.

    Article  CAS  Google Scholar 

  19. Qiao, Y. C.; Wang, Y. F.; Tian, H.; Li, M. R.; Jian, J. M.; Wei, Y. H.; Tian, Y.; Wang, D. Y.; Pang, Y.; Geng, X. S. et al. Multilayer graphene epidermal electronic skin. ACS Nano 2018, 12, 8839–8846.

    Article  CAS  Google Scholar 

  20. Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

    Article  CAS  Google Scholar 

  21. Li, J. T.; Stanford, M. G.; Chen, W. Y.; Presutti, S. E.; Tour, J. M. Laminated laser-induced graphene composites. ACS Nano 2020, 14, 7911–7919.

    Article  CAS  Google Scholar 

  22. Wang, W. T.; Lu, L. S.; Xie, Y. X.; Mei, X. K.; Tang, Y.; Wu, W. B.; Liang, R. X. Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors. Appl. Surf. Sci. 2020, 504, 144487.

    Article  CAS  Google Scholar 

  23. Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.

    Article  CAS  Google Scholar 

  24. Ye, R. Q.; Chyan, Y.; Zhang, J. B.; Li, Y. L.; Han, X.; Kittrell, C.; Tour, J. M. Laser-induced graphene formation on wood. Adv. Mater. 2017, 29, 1702211.

    Article  Google Scholar 

  25. Chyan, Y.; Ye, R. Q.; Li, Y. L.; Singh, S. P.; Arnusch, C. J.; Tour, J. M. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food. ACS Nano 2018, 12, 2176–2183.

    Article  CAS  Google Scholar 

  26. Wang, Y. N.; Wang, Y.; Zhang, P. P.; Liu, F.; Luo, S. D. Laser-induced freestanding graphene papers: A new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 2018, 14, 1802350.

    Article  Google Scholar 

  27. Zang, X.; Jian, C.; Ingersoll, S.; Li, H. S.; Adams, J. J.; Lu, Z.; Ferralis, N.; Grossman, J. C. Laser-engineered heavy hydrocarbons: Old materials with new opportunities. Sci. Adv. 2020, 6, eaaz5231.

    Article  CAS  Google Scholar 

  28. Zang, X. N.; Shen, C. W.; Chu, Y.; Li, B. X.; Wei, M. S.; Zhong, J. W.; Sanghadasa, M.; Lin, L. W. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics. Adv. Mater. 2018, 30, 1800062.

    Article  Google Scholar 

  29. Wang, W. T.; Lu, L. S.; Xie, Y. X.; Yuan, W.; Wan, Z. P.; Tang, Y.; Teh, K. S. A highly stretchable microsupercapacitor using laser-induced graphene/NiO/Co3O4 electrodes on a biodegradable waterborne polyurethane substrate. Adv. Mater. Technol. 2020, 5, 1900903.

    Article  CAS  Google Scholar 

  30. Jeong, S. Y.; Ma, Y. W.; Lee, J. U.; Je, G. J.; Shin, B. S. Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser. Sensors 2019, 19, 4867.

    Article  CAS  Google Scholar 

  31. Sun, H. L.; Dai, K.; Zhai, W.; Zhou, Y. J.; Li, J. W.; Zheng, G. Q.; Li, B.; Liu, C. T.; Shen, C. Y. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl. Mater. Interfaces 2019, 11, 36052–36062.

    Article  CAS  Google Scholar 

  32. Huang, L. X.; Wang, H.; Wu, P. X.; Huang, W. M.; Gao, W.; Fang, F. Y.; Cai, N.; Chen, R. X.; Zhu, Z. M. Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber. Sensors 2020, 20, 4266.

    Article  CAS  Google Scholar 

  33. Lu, L.; Zhang, D.; Xie, Y.; He, H.; Wang, W. Laser induced graphene/silicon carbide: Core-shell structure, multifield coupling effects, and pressure sensor applications. Adv. Mater. Technol., in press, https://doi.org/10.1002/admt.202200441.

  34. Jiang, Y. G.; He, Q. P.; Cai, J.; Shen, D. W.; Hu, X. H.; Zhang, D. Y. Flexible strain sensor with tunable sensitivity via microscale electrical breakdown in graphene/polyimide thin films. ACS Appl. Mater. Interfaces 2020, 12, 58317–58325.

    Article  CAS  Google Scholar 

  35. Sun, F. Q.; Tian, M. W.; Sun, X. T.; Xu, T. L.; Liu, X. Q.; Zhu, S. F.; Zhang, X. J.; Qu, L. J. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett. 2019, 19, 6592–6599.

    Article  CAS  Google Scholar 

  36. Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

    Article  CAS  Google Scholar 

  37. Han, Z. W.; Liu, L. P.; Zhang, J. Q.; Han, Q. G.; Wang, K. J.; Song, H. L.; Wang, Z.; Jiao, Z. B.; Niu, S. C.; Ren, L. Q. High-performance flexible strain sensor with bio-inspired crack arrays. Nanoscale 2018, 10, 15178–15186.

    Article  CAS  Google Scholar 

  38. Fratzl, P.; Barth, F. G. Biomaterial systems for mechanosensing and actuation. Nature 2009, 462, 442–448.

    Article  CAS  Google Scholar 

  39. Liu, L. P.; Jiao, Z. B.; Zhang, J. Q.; Wang, Y. C.; Zhang, C. C.; Meng, X. C.; Jiang, X. H.; Niu, S. C.; Han, Z. W.; Ren, L. Q. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications. ACS Appl. Mater. Interfaces 2021, 13, 1967–1978.

    Article  CAS  Google Scholar 

  40. Wang, D. K.; Zhang, J. Q.; Ma, G. L.; Fang, Y. Q.; Liu, L. P.; Wang, J. X.; Sun, T.; Zhang, C. C.; Meng, X. C.; Wang, K. J. et al. A selective-response bioinspired strain sensor using viscoelastic material as middle layer. ACS Nano 2021, 15, 19629–19639.

    Article  CAS  Google Scholar 

  41. Chen, Z. M.; Liu, X. H.; Wang, S. M.; Zhang, X. X.; Luo, H. S. A bioinspired multilayer assembled microcrack architecture nanocomposite for highly sensitive strain sensing. Compos. Sci. Technol. 2018, 164, 51–58.

    Article  CAS  Google Scholar 

  42. Yin, F. X.; Yang, J. Z.; Ji, P. G.; Peng, H. F.; Tang, Y. T.; Yuan, W. J. Bioinspired pretextured reduced graphene oxide patterns with multiscale topographies for high-performance mechanosensors. ACS Appl. Mater. Interfaces 2019, 11, 18645–18653.

    Article  CAS  Google Scholar 

  43. Lu, L.; Li, Z.; He, H.; Xie, Y.; Wang, W. Bioinspired strain sensor using multiwalled carbon nanotube/polyvinyl butyral/nylon cloth for wireless sensing applications. IEEE Sens. J. 2022, 22, 12664–12672.

    Article  CAS  Google Scholar 

  44. Dinh Le, T. S.; An, J. N.; Huang, Y.; Vo, Q.; Boonruangkan, J.; Tran, T.; Kim, S. W.; Sun, G. Z.; Kim, Y. J. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 2019, 13, 13293–13303.

    Article  CAS  Google Scholar 

  45. Wang, H. Q.; Luo, H. S.; Zhou, H. K.; Zhou, X. D.; Zhang, X. X.; Lin, W. J.; Yi, G. B.; Zhang, Y. H. Dramatically enhanced strain- and moisture-sensitivity of bioinspired fragmentized carbon architectures regulated by cellulose nanocrystals. Chem. Eng. J. 2018, 345, 452–461.

    Article  CAS  Google Scholar 

  46. Guo, X. H.; Zhao, Y. N.; Xu, X.; Chen, D. L.; Zhang, X. Y.; Yang, G.; Qiao, W.; Feng, R.; Zhang, X. Q.; Wu, J. et al. Biomimetic flexible strain sensor with high linearity using double conducting layers. Compos. Sci. Technol. 2021, 213, 108908.

    Article  Google Scholar 

  47. Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K. Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222–226.

    Article  CAS  Google Scholar 

  48. Luo, C. Z.; Jia, J. J.; Gong, Y. N.; Wang, Z. C.; Fu, Q.; Pan, C. X. Highly sensitive, durable, and multifunctional sensor inspired by a spider. ACS Appl. Mater. Interfaces 2017, 9, 19955–19962.

    Article  CAS  Google Scholar 

  49. Shafiei, A.; Pro, J. W.; Barthelat, F. Bioinspired buckling of scaled skins. Bioinspir. Biomim. 2021, 16, 045002.

    Article  Google Scholar 

  50. Zou, Q.; Zheng, J.; Su, Q.; Wang, W. L.; Gao, W.; Ma, Z. M. A wave-inspired ultrastretchable strain sensor with predictable cracks. Sens. Actuators A: Phys. 2019, 300, 111658.

    Article  CAS  Google Scholar 

  51. Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacremimetic microscale “brick-and-mortar” architecture. ACS Nano 2019, 13, 649–659.

    Article  CAS  Google Scholar 

  52. Miao, W. N.; Yao, Y. X.; Zhang, Z. W.; Ma, C. P.; Li, S. Z.; Tang, J. Y.; Liu, H.; Liu, Z. M.; Wang, D. Y.; Camburn, M. A. et al. Micro-/nano-voids guided two-stage film cracking on bioinspired assemblies for high-performance electronics. Nat. Commun. 2019, 10, 3862.

    Article  Google Scholar 

  53. Tan, Y. L.; Hu, B. R.; Song, J.; Chu, Z. Y.; Wu, W. J. Bioinspired multiscale wrinkling patterns on curved substrates: An overview. Nano-Micro Lett. 2020, 12, 101.

    Article  CAS  Google Scholar 

  54. Wang, K. J.; Zhang, J. Q.; Fang, Y. Q.; Chen, D. B.; Liu, L. P.; Han, Z. W.; Ren, L. Q. Micro/nano-scale characterization and fatigue fracture resistance of mechanoreceptor with crack-shaped slit arrays in scorpion. J. Bionic Eng. 2019, 16, 410–422.

    Article  Google Scholar 

  55. Song, J.; Tan, Y. L.; Chu, Z. Y.; Xiao, M.; Li, G. Y.; Jiang, Z. H.; Wang, J.; Hu, T. J. Hierarchical reduced graphene oxide ridges for stretchable, wearable, and washable strain sensors. ACS Appl. Mater. Interfaces 2019, 11, 1283–1293.

    Article  CAS  Google Scholar 

  56. Wang, W. T.; Lu, L. S.; Li, Z. H.; Lin, L. H.; Liang, Z. B.; Lu, X. Y.; Xie, Y. X. Fingerprint-inspired strain sensor with balanced sensitivity and strain range using laser-induced graphene. ACS Appl. Mater. Interfaces 2022, 14, 1315–1325.

    Article  CAS  Google Scholar 

  57. Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

    Article  Google Scholar 

  58. Jiang, B. L.; Liu, L. T.; Gao, Z. P.; Wang, W. S. A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance. Adv. Opt. Mater. 2018, 6, 1800195.

    Article  Google Scholar 

  59. Yang, S.; Khare, K.; Lin, P. C. Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 2010, 20, 2550–2564.

    Article  CAS  Google Scholar 

  60. Luo, S. D.; Hoang, P. T.; Liu, T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016, 96, 522–531.

    Article  CAS  Google Scholar 

  61. Liu, W.; Huang, Y. H.; Peng, Y. D.; Walczak, M.; Wang, D.; Chen, Q.; Liu, Z.; Li, L. Stable wearable strain sensors on textiles by direct laser writing of graphene. ACS Appl. Nano Mater. 2020, 3, 283–293.

    Article  CAS  Google Scholar 

  62. Wang, G. T.; Wang, Y.; Luo, Y.; Luo, S. D. A self-converted strategy toward multifunctional composites with laser-induced graphitic structures. Compos. Sci. Technol. 2020, 199, 108334.

    Article  CAS  Google Scholar 

  63. Wang, W. T.; Lu, L. S.; Li, Z. H.; Xie, Y. X. Laser induced 3D porous graphene dots: Bottom-up growth mechanism, multi-physics coupling effect and surface wettability. Appl. Surf. Sci. 2022, 592, 153242.

    Article  CAS  Google Scholar 

  64. Park, B.; Kim, J.; Kang, D.; Jeong, C.; Kim, K. S.; Kim, J. U.; Yoo, P. J.; Kim, T. I. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: Effect of crack depth. Adv. Mater. 2016, 28, 8130–8137.

    Article  CAS  Google Scholar 

  65. Yang, H. T.; Xiao, X.; Li, Z. P.; Li, K. R.; Cheng, N.; Li, S.; Low, J. H.; Jing, L.; Fu, X. M.; Achavananthadith, S. et al. Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 2020, 14, 11860–11875.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The current study was supported by the Natural Science Foundation of Guangdong Province, China (No. 2021B1515020087) and the National Natural Science Foundation of China (No. 51905178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxi Xie.

Electronic Supplementary Material

12274_2022_4680_MOESM1_ESM.pdf

Scorpion-inspired dual-bionic, microcrack-assisted wrinkle based laser induced graphene-silver strain sensor with high sensitivity and broad working range for wireless health monitoring system

Supplementary material, approximately 5.70 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lu, L., Lu, X. et al. Scorpion-inspired dual-bionic, microcrack-assisted wrinkle based laser induced graphene-silver strain sensor with high sensitivity and broad working range for wireless health monitoring system. Nano Res. 16, 1228–1241 (2023). https://doi.org/10.1007/s12274-022-4680-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4680-0

Keywords

Navigation