Skip to main content
Log in

Enhancing thermal conductivity of silicone rubber composites by in-situ constructing SiC networks: A finite-element study based on first principles calculation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polymer composites as thermal interface materials have been widely used in modern electronic equipment. In this work, we report a novel method to prepare highly through-plane thermally conductive silicone rubber (SR) composites with vertically aligned silicon carbide fibers (VA-SiCFs) entangled by SiC nanowires (SiCNWs) networks. First, a series of carbon fibers (CFs) skeletons were fabricated in sequence of coating poor thermally conductive polyacrylonitrile-based CFs with polydopamine, ice-templated assembly, and freeze-drying processes. Furthermore, VA-SiCFs networks, i.e., long-range continuous SiCFs-SiCNWs networks, based on the prepared CFs skeletons, were in-situ obtained via template-assisted chemical vapor deposition method. The thermal conductivity enhancement mechanism of VA-SiCFs networks on its SR composites was also intensively studied by finite element simulation, based on the first principles investigation of SiC, and Foygel’s theory. The in-situ grown VA-SiCFs networks possess high intrinsic thermal conductivity without the thermal interface between fillers, acting as the high-efficiency through-plane long-range continuous thermal conduction path, in which the SiCNWs were the in-plane “thermal spreader”. The VA-SiCFs/SR composites reached a high through-plane thermal conductivity, 2.13 W/(m·K), at the filler loading of 15 vol.%, which is 868.2%, and 249.2% higher than that of pure SR sample, and random-CFs@polydopamine (PDA)/SR composites at the same content, respectively. The VA-SiCFs/SR composites also exhibited good electrical insulation performance and excellent dimensional stability, which guaranteed the stable interfacial heat transfer of high-power density electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. L.; Lim, J. S. K.; Yan, W. L.; Guo, F.; Liang, Y. N.; Chen, H.; Lambourne, A.; Hu, X. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 2020, 12, 16987–16996.

    Article  CAS  Google Scholar 

  2. Ruan, K. P.; Guo, Y. Q.; Lu, C. Y.; Shi, X. T.; Ma, T. B.; Zhang, Y. L.; Kong, J.; Gu, J. W. Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 2021, 8438614.

    Article  CAS  Google Scholar 

  3. Lin, Y.; Chen, J.; Jiang, P. K.; Huang, X. Y. Wood annual ring structured elastomer composites with high thermal conduction enhancement efficiency. Chem. Eng. J. 2020, 389, 123467.

    Article  CAS  Google Scholar 

  4. Wang, H. T.; Ding, D. L.; Liu, Q.; Chen, Y. H.; Zhang, Q. Y. Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos. Part B 2019, 158, 311–318.

    Article  CAS  Google Scholar 

  5. Ding, D. L.; Zou, M. H.; Wang, X.; Qin, G. Z.; Zhang, S. Y.; Chan, S. Y.; Meng, Q. Y.; Liu, Z. G.; Zhang, Q. Y.; Chen, Y. H. Thermal conductivity of polydisperse hexagonal BN/polyimide composites: Iterative EMT model and machine learning based on first principles investigation. Chem. Eng. J. 2022, 437, 135438.

    Article  CAS  Google Scholar 

  6. Ding, D. L.; Shang, Z. H.; Zhang, X.; Lei, X. F.; Liu, Z. G.; Zhang, Q. Y.; Chen, Y. H. Greatly enhanced thermal conductivity of polyimide composites by polydopamine modification and the 2D-aligned structure. Ceram. Int. 2020, 46, 28363–28372.

    Article  CAS  Google Scholar 

  7. Ma, J. K.; Shang, T. Y.; Ren, L. L.; Yao, Y. M.; Zhang, T.; Xie, J. Q.; Zhang, B. T.; Zeng, X. L.; Sun, R.; Xu, J. B. et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem. Eng. J. 2020, 380, 122550.

    Article  CAS  Google Scholar 

  8. Chen, J.; Huang, X. Y.; Zhu, Y. K.; Jiang, P. K. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 2017, 27, 1604754.

    Article  Google Scholar 

  9. Hou, X.; Chen, Y. P.; Dai, W.; Wang, Z. W.; Li, H.; Lin, C. T.; Nishimura, K.; Jiang, N.; Yu, J. H. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers. Chem. Eng. J. 2019, 375, 121921.

    Article  CAS  Google Scholar 

  10. Zhu, Y. F.; Ma, C.; Zhang, W.; Zhang, R. P.; Koratkar, N.; Liang, J. Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J. Appl. Phys. 2009, 105, 054319.

    Article  Google Scholar 

  11. Yao, Y. M.; Zhu, X. D.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl. Mater. Interfaces 2018, 10, 9669–9678.

    Article  CAS  Google Scholar 

  12. Ghosh, B.; Xu, F.; Grant, D. M.; Giangrande, P.; Gerada, C.; George, M. W.; Hou, X. H. Highly ordered BN-BN stacking structure for improved thermally conductive polymer composites. Adv. Electron. Mater. 2020, 6, 2000627.

    Article  CAS  Google Scholar 

  13. Li, X.; Wu, B.; Li, Y.; Alam, M.; Chen, P.; Xia, R.; Lin, C. T.; Qian, J. S. Construction of oriented interconnected BNNS skeleton by self-growing CNTs leading high thermal conductivity. Adv. Mater. Interface 2021, 8, 2001910.

    Article  CAS  Google Scholar 

  14. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

  15. An, F.; Li, X. F.; Min, P.; Liu, P. F.; Jiang, Z. G.; Yu, Z. Z. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 2018, 10, 17383–17392.

    Article  CAS  Google Scholar 

  16. Yan, Q. W.; Alam, F. E.; Gao, J. Y.; Dai, W.; Tan, X.; Lv, L.; Wang, J. J.; Zhang, H.; Chen, D.; Nishimura, K. et al. Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 2021, 31, 2104062.

    Article  CAS  Google Scholar 

  17. Maqbool, M.; Guo, H. C.; Bashir, A.; Usman, A.; Abid, A. Y.; He, G. S.; Ren, Y. J.; Ali, Z.; Bai, S. L. Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene—graphene interface. Nano Res. 2020, 13, 2741–2748.

    Article  CAS  Google Scholar 

  18. Wang, D. Z.; Lin, Y.; Hu, D. W.; Jiang, P. K.; Huang, X. Y. Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Compos. Part A 2020, 130, 105754.

    Article  CAS  Google Scholar 

  19. Liu, H. B.; Huang, Z. Y.; Chen, T.; Su, X. Q.; Liu, Y. N.; Fu, R. L. Construction of 3D MXene/silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 2022, 427, 131540.

    Article  CAS  Google Scholar 

  20. Uetani, K.; Ata, S.; Tomonoh, S.; Yamada, T.; Yumura, M.; Hata, K. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 2014, 26, 5857–5862.

    Article  CAS  Google Scholar 

  21. Wang, Z.; Gao, C. P.; Zhang, S. M.; Zhang, P. Y.; Zhang, Z. J. Magnetic field-induced alignment of nickel-coated copper nanowires in epoxy composites for highly thermal conductivity with low filler loading. Compos. Sci. Technol. 2022, 218, 109137.

    Article  CAS  Google Scholar 

  22. Ji, C.; Wang, Y.; Ye, Z. Q.; Tan, L. Y.; Mao, D. S.; Zhao, W. G.; Zeng, X. L.; Yan, C. Z.; Sun, R.; Kang, D. J. et al. Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials. ACS Appl. Mater. Interfaces 2020, 12, 24298–24307.

    Article  CAS  Google Scholar 

  23. Sun, Y. F.; Wang, S. K.; Li, M.; Gu, Y. Z.; Zhang, Z. G. Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking. Mater. Des. 2018, 144, 263–270.

    Article  CAS  Google Scholar 

  24. Yu, Z. F.; Wei, S.; Guo, J. D. Fabrication of aligned carbon-fiber/polymer TIMs using electrostatic flocking method. J. Mater. Sci. Mater. Electron. 2019, 30, 10233–10243.

    Article  CAS  Google Scholar 

  25. Zhang, X. F.; Zhou, S. L.; Xie, B.; Lan, W.; Fan, Y. W.; Hu, R.; Luo, X. B. Thermal interface materials with sufficiently vertically aligned and interconnected nickel-coated carbon fibers under high filling loads made via preset-magnetic-field method. Compos. Sci. Technol. 2021, 213, 108922.

    Article  CAS  Google Scholar 

  26. He, J.; Wang, H.; Qu, Q. Q.; Su, Z.; Qin, T. F.; Tian, X. Y. Three-dimensional network constructed by vertically oriented multilayer graphene and SiC nanowires for improving thermal conductivity and operating safety of epoxy composites with ultralow loading. Compos. Part A 2020, 139, 106062.

    Article  CAS  Google Scholar 

  27. Jing, J. J.; Chen, Y. H.; Shi, S. H.; Yang, L.; Lambin, P. Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods. Chem. Eng. J. 2020, 402, 126218.

    Article  CAS  Google Scholar 

  28. Liang, Z. Q.; Pei, Y.; Chen, C. J.; Jiang, B.; Yao, Y. G.; Xie, H.; Jiao, M. L.; Chen, G. G.; Li, T. Y.; Yang, B. et al. General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 2019, 13, 12653–12661.

    Article  CAS  Google Scholar 

  29. Zhu, C. Y.; Chen, Z. H.; Zhu, R. J.; Sheng, N.; Rao, Z. H. Vertically aligned Al2O3 fiber framework leading to anisotropically enhanced thermal conductivity of epoxy composites. Adv. Eng. Mater. 2021, 23, 2100327.

    Article  CAS  Google Scholar 

  30. Yang, G.; Zhang, X. D.; Pan, D.; Zhang, W.; Shang, Y.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Shen, C. Y. Highly thermal conductive poly(vinyl alcohol) composites with oriented hybrid networks: Silver nanowire bridged boron nitride nanoplatelets. ACS Appl. Mater. Interfaces 2021, 13, 32286–32294.

    Article  CAS  Google Scholar 

  31. Zhou, S. S.; Xu, T. L.; Jiang, F.; Song, N.; Ding, P. Highperformance polyamide-imide films: Effect of functionalization degree of BN nanosheets. Compos. Sci. Technol. 2021, 213, 108907.

    Article  CAS  Google Scholar 

  32. Foygel, M.; Morris, R. D.; Anez, D.; French, S.; Sobolev, V. L. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 2005, 71, 104201.

    Article  Google Scholar 

  33. Wei, B. J.; Zhang, L.; Yang, S. Q. Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem. Eng. J. 2021, 404, 126437.

    Article  CAS  Google Scholar 

  34. Fu, C. J.; Yan, C. Z.; Ren, L. L.; Zeng, X. L.; Du, G. P.; Sun, R.; Xu, J. B.; Wong, C. P. Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles. Compos. Sci. Technol. 2019, 177, 118–126.

    Article  CAS  Google Scholar 

  35. Chen, C.; Xue, Y.; Li, Z.; Wen, Y. F.; Li, X. W.; Wu, F.; Li, X. J.; Shi, D. A.; Xue, Z. G.; Xie, X. L. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles. Chem. Eng. J. 2019, 369, 1150–1160.

    Article  CAS  Google Scholar 

  36. Yao, Y. M.; Ye, Z. Q.; Huang, F. Y.; Zeng, X. L.; Zhang, T.; Shang, T. Y.; Han, M.; Zhang, W. L.; Ren, L. L.; Sun, R. et al. Achieving significant thermal conductivity enhancement via an ice-templated and sintered BN-SiC skeleton. ACS Appl. Mater. Interfaces 2020, 12, 2892–2902.

    Article  CAS  Google Scholar 

  37. Vu, M. C.; Choi, W. K.; Lee, S. G.; Park, P. J.; Kim, D. H.; Islam, A.; Kim, S. R. High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds. ACS Appl. Mater. Interfaces 2020, 12, 23388–23398.

    Article  CAS  Google Scholar 

  38. Bo, Z.; Zhu, H. R.; Ying, C. Y.; Yang, H. C.; Wu, S. H.; Kong, J.; Yang, S. L.; Wei, X.; Yan, J. H.; Cen, K. F. Tree-inspired radially aligned, bimodal graphene frameworks for highly efficient and isotropic thermal transport. Nanoscale 2019, 11, 21249–21258.

    Article  CAS  Google Scholar 

  39. Wu, J. L.; Song, X. P.; Gong, Y. Z.; Yang, W.; Chen, L.; He, S. J.; Lin, J.; Bian, X. M. Analysis of the heat conduction mechanism for Al2O3/silicone rubber composite material with FEM based on experiment observations. Compos. Sci. Technol. 2021, 210, 108809.

    Article  CAS  Google Scholar 

  40. Malakkal, L.; Szpunar, B.; Siripurapu, R. K.; Szpunar, J. A. Thermal conductivity of bulk and nanowire of cubic-SiC from ab initio calculations. Comput. Mater. Sci. 2017, 128, 249–256.

    Article  CAS  Google Scholar 

  41. Li, W.; Carrete, J.; Katcho, N. A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758.

    Article  CAS  Google Scholar 

  42. Qin, G. Z.; Qin, Z. Z.; Wang, H. M.; Hu, M. Anomalously temperature-dependent thermal conductivity of monolayer GaN with large deviations from the traditional 1/T law. Phys. Rev. B 2017, 95, 195416.

    Article  Google Scholar 

  43. Wang, H.; Zhang, W.; Wang, C. B.; Ma, J. W.; Huai, P. Molecular dynamics study of thermal transport across grain boundaries in silicon carbide nanorod. Mater. Res. Express 2016, 3, 035018.

    Article  Google Scholar 

  44. Karaaslan, Y.; Yapicioglu, H.; Sevik, C. Assessment of thermal transport properties of group-III nitrides: A classical molecular dynamics study with transferable Tersoff-type interatomic potentials. Phys. Rev. Appl. 2020, 13, 034027.

    Article  CAS  Google Scholar 

  45. Szpunar, B.; Malakkal, L.; Rahman, J.; Szpunar, J. A. Atomistic modeling of thermo-mechanical properties of cubic SiC. J. Am. Ceram. Soc. 2018, 101, 4753–4762.

    Article  CAS  Google Scholar 

  46. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

    Article  Google Scholar 

  47. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

    Article  CAS  Google Scholar 

  48. Li, W.; Lindsay, L.; Broido, D. A.; Stewart, D. A.; Mingo, N. Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Phys. Rev. B 2012, 86, 174307.

    Article  Google Scholar 

  49. Shetty, S. K.; Ismayil; Hegde, S.; Ravindrachary, V.; Sanjeev, G.; Bhajantri, R. F.; Masti, S. P. Dielectric relaxations and ion transport study of NaCMC: NaNO3 solid polymer electrolyte films. Ionics 2021, 27, 2509–2525.

    Article  CAS  Google Scholar 

  50. Yang, M.; Sun, T. Q.; Li, Y. H.; Zhao, Y. F.; Yuan, S. X.; Yang, Z. Non-solvent phase separation-assisted fabrication for flexible polyacrylonitrile based carbon membrane with excellent mechanical properties. J. Macromol. Sci. A 2021, 58, 567–577.

    Article  CAS  Google Scholar 

  51. Zhong, Y. J.; Bian, W. F. Effect of crystallites structure of PAN-based carbon fibers on tensile strength. J. Mater. Eng. 2017, 45, 37–42.

    Google Scholar 

  52. Qin, M. M.; Feng, Y. Y.; Ji, T. X.; Feng, W. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture. Carbon 2016, 104, 157–168.

    Article  CAS  Google Scholar 

  53. Chaudhary, A.; Kumar, R.; Dhakate, S. R.; Kumari, S. Scalable development of a multi-phase thermal management system with superior EMI shielding properties. Compos. Part B 2019, 158, 206–217.

    Article  CAS  Google Scholar 

  54. Peretz Damari, S.; Cullari, L.; Laredo, D.; Nadiv, R.; Ruse, E.; Sripada, R.; Regev, O. Graphene and boron nitride nanoplatelets for improving vapor barrier properties in epoxy nanocomposites. Prog. Org. Coat. 2019, 136, 105207.

    Article  CAS  Google Scholar 

  55. Wang, Y. K.; Chen, Z. H.; Niu, J. H.; Shi, Y.; Zhao, J. P.; Ye, J. J.; Tian, W. C. Electrically responsive shape memory composites using silver plated chopped carbon fiber. Front. Chem. 2020, 8, 322.

    Article  Google Scholar 

  56. Liang, C. Y.; Wang, Z. J. Eggplant-derived SiC aerogels with highperformance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 2019, 373, 598–605.

    Article  CAS  Google Scholar 

  57. Li, J. C.; Zhao, X. Y.; Wu, W. J.; Ji, X. W.; Lu, Y. L.; Zhang, L. Q. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J. 2021, 415, 129054.

    Article  CAS  Google Scholar 

  58. Wu, J. L.; Zhang, Y. R.; Gong, Y. Z.; Wang, K.; Chen, Y.; Song, X. P.; Lin, J.; Shen, B. Y.; He, S. J.; Bian, X. M. Analysis of the electrical and thermal properties for magnetic Fe3O4-coated SiC-filled epoxy composites. Polymers 2021, 13, 3028.

    Article  CAS  Google Scholar 

  59. Lee, W.; Wie, J.; Kim, J. Enhancement of thermal conductivity of alumina/epoxy composite using poly(glycidyl methacrylate) grafting and crosslinking. Ceram. Int. 2021, 47, 18662–18668.

    Article  CAS  Google Scholar 

  60. Ren, L. L.; Li, Q.; Lu, J. B.; Zeng, X. L.; Sun, R.; Wu, J. B.; Xu, J. B.; Wong, C. P. Enhanced thermal conductivity for Ag-deposited alumina sphere/epoxy resin composites through manipulating interfacial thermal resistance. Compos. Part A 2018, 107, 561–569.

    Article  CAS  Google Scholar 

  61. Kim, Y.; Kim, J. Fabrication of Fe3O4 coated boron nitride nanoplatelets by liquid-phase exfoliation for thermally enhanced epoxy composites via magnetic alignment. Compos. Sci. Technol. 2020, 188, 107961.

    Article  CAS  Google Scholar 

  62. Tong, Z.; Liu, L. H.; Li, L. S.; Bao, H. Temperature-dependent infrared optical properties of 3C-, 4H- and 6H-SiC. Phys. B 2018, 537, 194–201.

    Article  CAS  Google Scholar 

  63. D’Souza, R.; Mukherjee, S. Length-dependent lattice thermal conductivity of single-layer and multilayer hexagonal boron nitride: A first-principles study using the Callaway-Klemens and real-space supercell methods. Phys. Rev. B 2017, 96, 205422.

    Article  Google Scholar 

  64. Shafique, A.; Shin, Y. H. Ultrahigh and anisotropic thermal transport in the hybridized monolayer (BC2N) of boron nitride and graphene: A first-principles study. Phys. Chem. Chem. Phys. 2019, 21, 17306–17313.

    Article  CAS  Google Scholar 

  65. Rodriguez, A.; Liu, Y. Q.; Hu, M. Spatial density neural network force fields with first-principles level accuracy and application to thermal transport. Phys. Rev. B 2020, 102, 035203.

    Article  CAS  Google Scholar 

  66. Crocombette, J. P.; Gelebart, L. Multiscale modeling of the thermal conductivity of polycrystalline silicon carbide. J. Appl. Phys. 2009, 106, 083520.

    Article  Google Scholar 

  67. Sun, Y. Y.; Zhou, L. Y.; Han, Y.; Cui, L.; Chen, L. A new anisotropic thermal conductivity equation for h-BN/polymer composites using finite element analysis. Int. J. Heat Mass Transfer 2020, 160, 120157.

    Article  CAS  Google Scholar 

  68. An, D.; Cheng, S. S.; Xi, S.; Zhang, Z. Y.; Duan, X. Y.; Ren, Y. J.; Li, J. X.; Sun, Z. J.; Liu, Y. Q.; Wong, C. P. Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem. Eng. J. 2020, 383, 123151.

    Article  CAS  Google Scholar 

  69. Hu, J. T.; Huang, Y.; Yao, Y. M.; Pan, G. R.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553.

    Article  CAS  Google Scholar 

  70. Qi, W.; Liu, M.; Wu, J. L.; Xie, Q.; Chen, L.; Yang, X.; Shen, B. Y.; Bian, X. M.; Song, W. L. Promoting the thermal transport via understanding the intrinsic relation between thermal conductivity and interfacial contact probability in the polymeric composites with hybrid fillers. Compos. Part B 2022, 232, 109613.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (Nos. 21978240, 52003219, and 52006057), Youth project of basic research program of Natural Science in Shaanxi Province (No. 2020JQ-179), the Fundamental Research Funds for the Central Universities (Nos. 3102018AX004, 3102017jc01001, and 531119200237), Shenzhen Xuni University Lab Construction Funding (No. YFJGJS1.0, 20191024213117281), Guangdong Province Key Field R&D Project (No. 2020B010178001), the student innovation fund of Northwestern Polytechnical University (No. 202110699234), the Open Testing Foundation of the Analytical & Testing Center of Northwestern Polytechnical University (No. 2020T020), and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (No. CX2022072). The authors also acknowledge National Supercomputer Center in Guangzhou for providing COMSOL Multiphysics 5.5 HPC resources that have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangzhao Qin or Yanhui Chen.

Electronic Supplementary Material

12274_2022_4639_MOESM1_ESM.pdf

Enhancing thermal conductivity of silicone rubber composites by in-situ constructing SiC networks: A finite-element study based on first principles calculation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Zhang, S., Liang, H. et al. Enhancing thermal conductivity of silicone rubber composites by in-situ constructing SiC networks: A finite-element study based on first principles calculation. Nano Res. 16, 1430–1440 (2023). https://doi.org/10.1007/s12274-022-4639-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4639-1

Keywords

Navigation