Skip to main content
Log in

Intrinsically stretchable polymer semiconductor based electronic skin for multiple perceptions of force, temperature, and visible light

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a stretchable seamless device, electronic skin (E-skin) has drawn enormous interest due to its skin-like sensing capability. Besides the basic perception of force and temperature, multiple perception that is beyond existing functions of human skin is becoming an important direction for E-skin developments. However, the present E-skins for multiple perceptions mainly rely on different sensing materials and heterogeneous integration, resulting in a complex device structure. Additionally, their stretchability is usually achieved by the complicated microstructure design of rigid materials. Here, we report an intrinsically stretchable polymer semiconductor based E-skin with a simple structure for multiple perceptions of force, temperature, and visible light. The E-skin is on the basis of poly(3-hexylthiophene) (P3HT) nanofibers percolated polydimethylsiloxane (PDMS) composite polymer semiconductor, which is fabricated by a facile solution method. The E-skin shows reliable sensing capabilities when it is used to perceive strain, pressure, temperature, and visible light. Based on the E-skin, an intelligent robotic hand sensing and controlling system is further demonstrated. Compared with conventional E-skins for multiple perceptions, this E-skin only has a simple monolayer sensing membrane without the need of combining different sensing materials, heterogeneous integration, and complicated microstructure design. Such a strategy of utilizing intrinsically stretchable polymer semiconductor to create simple structured E-skin for multiple perceptions will promote the development of E-skins in a broad application scenario, such as artificial robotic skins, virtual reality, intelligent gloves, and biointegrated electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, Y. Y.; Li, Y. Z.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B. C.; Palacios, T.; Torralba, A.; Matusik, W. Learning human-environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201.

    Article  Google Scholar 

  2. Li, X.; Zhu, P. C.; Zhang, S. C.; Wang, X. C.; Luo, X. P.; Leng, Z. W.; Zhou, H.; Pan, Z. F.; Mao, Y. C. A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin. ACS Nano 2022, 16, 5909–5919.

    Article  CAS  Google Scholar 

  3. Ouyang, Z. F.; Cui, S. B.; Yu, H. Y.; Xu, D. W.; Wang, C.; Tang, D. P.; Tam, K. C. Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Res. 2022, 15, 1027–1038.

    Article  CAS  Google Scholar 

  4. Zhang, T. T.; Wen, Z.; Lei, H.; Gao, Z. Q.; Chen, Y. F.; Zhang, Y.; Liu, J. Y.; Xie, Y. L.; Sun, X. H. Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template. Nano Energy 2021, 87, 106215.

    Article  CAS  Google Scholar 

  5. Chen, Y. F.; Gao, Z. Q.; Zhang, F. J.; Wen, Z.; Sun, X. H. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022, 2, 20210112.

    Article  Google Scholar 

  6. Yang, M.; Cheng, Y. F.; Yue, Y.; Chen, Y.; Gao, H.; Li, L.; Cai, B.; Liu, W. J.; Wang, Z. Y.; Guo, H. Z.; et. al. High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 2022, 2200507.

    Google Scholar 

  7. Shim, H.; Jang, S.; Jang, J. G.; Rao, Z.; Hong, J. I.; Sim, K.; Yu, C. J. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res. 2022, 15, 758–764.

    Article  CAS  Google Scholar 

  8. Liu, J. Y.; Wen, Z.; Lei, H.; Gao, Z. Q.; Sun, X. H. A liquid-solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa1. Nano-Micro Lett. 2022, 14, 88.

    Article  CAS  Google Scholar 

  9. Liang, B. H.; Huang, B. F.; He, J. K.; Yang, R. L.; Zhao, C. C.; Yang, B. R.; Cao, A. Y.; Tang, Z. K.; Gui, X. C. Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Res. 2022, 15, 3614–3620.

    Article  CAS  Google Scholar 

  10. Chen, Y. F.; Lei, H.; Gao, Z. Q.; Liu, J. Y.; Zhang, F. J.; Wen, Z.; Sun, X. H. Energy autonomous electronic skin with direct temperature-pressure perception. Nano Energy 2022, 98, 107273.

    Article  CAS  Google Scholar 

  11. Kim, H. J.; Sim, K.; Thukral, A.; Yu, C. J. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 2017, 3, e1701114.

    Article  Google Scholar 

  12. Zhao, X.; Chen, G. R.; Zhou, Y. H.; Nashalian, A.; Xu, J.; Tat, T.; Song, Y.; Libanori, A.; Xu, S. L.; Li, S. et al. Giant magnetoelastic effect enabled stretchable sensor for self-powered biomonitoring. ACS Nano 2022, 16, 6013–6022.

    Article  CAS  Google Scholar 

  13. Ramirez, M. D.; Oakley, T. H. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J. Exp. Biol. 2015, 218, 1513–1520.

    Article  Google Scholar 

  14. Ji, X. J.; Zhong, Y.; Li, C. Y.; Chu, J. J.; Wang, H. Q.; Xing, Z.; Niu, T. T.; Zhang, Z. H.; Du, A. Nanoporous carbon aerogels for laser-printed wearable sensors. ACS Appl. Nano Mater. 2021, 4, 6796–6804.

    Article  CAS  Google Scholar 

  15. Lu, Y.; Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Ren, Y. F.; Zhao, W. L.; Wang, Q.; Sun, C. C.; Wang, W. J.; Dong, X. C. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 2022, 15, 4421–4430.

    Article  CAS  Google Scholar 

  16. Lee, G.; Son, J. H.; Lee, S.; Kim, S. W.; Kim, D.; Nguyen, N. N.; Lee, S. G.; Cho, K. Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition. Adv. Sci. 2021, 8, 2002606.

    Article  CAS  Google Scholar 

  17. Yue, O. Y.; Wang, X. C.; Liu, X. H.; Hou, M. D.; Zheng, M. H.; Wang, Y. Y.; Cui, B. Q. Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 2021, 8, e2004377.

    Article  Google Scholar 

  18. Wang, Y. P.; Cao, X. F.; Cheng, J.; Yao, B. W.; Zhao, Y. S.; Wu, S. L.; Ju, B. Z.; Zhang, S. F.; He, X. M.; Niu, W. B. Cephalopod-inspired chromotropic ionic skin with rapid visual sensing capabilities to multiple stimuli. ACS Nano 2021, 15, 3509–3521.

    Article  CAS  Google Scholar 

  19. Wang, B. H.; Thukral, A.; Xie, Z. Q.; Liu, L. M.; Zhang, X. N.; Huang, W.; Yu, X. G.; Yu, C. J.; Marks, T. J.; Facchetti, A. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 2020, 11, 2405.

    Article  CAS  Google Scholar 

  20. Chen, H. R.; Lou, Z.; Shen, G. Z. An integrated flexible multifunctional sensing system for simultaneous monitoring of environment signals. Sci. China Mater. 2020, 63, 2560–2569.

    Article  CAS  Google Scholar 

  21. Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

    Article  Google Scholar 

  22. Sim, K.; Rao, Z.; Zou, Z. N.; Ershad, F.; Lei, J. M.; Thukral, A.; Chen, J.; Huang, Q. A.; Xiao, J. L.; Yu, C. J. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci. Adv. 2019, 5, eaav9653.

    Article  CAS  Google Scholar 

  23. Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

    Article  CAS  Google Scholar 

  24. Liu, J.; Wang, J. C.; Zhang, Z. T.; Molina-Lopez, F.; Wang, G. J. N.; Schroeder, B. C.; Yan, X. Z.; Zeng, Y. T.; Zhao, O.; Tran, H. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 2020, 11, 3362.

    Article  CAS  Google Scholar 

  25. Xiang, S. X.; Liu, D. J.; Jiang, C. C.; Zhou, W. M.; Ling, D.; Zheng, W. T.; Sun, X. P.; Li, X.; Mao, Y. C.; Shan, C. X. Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 2021, 31, 2100940.

    Article  CAS  Google Scholar 

  26. Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.

    Article  CAS  Google Scholar 

  27. Zheng, Y.; Wang, G. J. N.; Kang, J.; Nikolka, M.; Wu, H. C.; Tran, H.; Zhang, S.; Yan, H. P.; Chen, H.; Yuen, P. Y. et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv. Funct. Mater. 2019, 29, 1905340.

    Article  CAS  Google Scholar 

  28. Matsuhisa, N.; Niu, S. M.; O’Neill, S. J. K.; Kang, J.; Ochiai, Y.; Katsumata, T.; Wu, H. C.; Ashizawa, M.; Wang, G. J. N.; Zhong, D. L. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021, 600, 246–252.

    Article  CAS  Google Scholar 

  29. Wang, W. C.; Wang, S. H.; Rastak, R.; Ochiai, Y.; Niu, S. M.; Jiang, Y. W.; Arunachala, P. K.; Zheng, Y.; Xu, J.; Matsuhisa, N. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 2021, 4, 143–150.

    Article  CAS  Google Scholar 

  30. Yan, Z. C.; Xu, D.; Lin, Z. Y.; Wang, P. Q.; Cao, B. C.; Ren, H. Y.; Song, F.; Wan, C. Z.; Wang, L. Y.; Zhou, J. X. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 2022, 375, 852–859.

    Article  CAS  Google Scholar 

  31. Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473–480.

    Article  Google Scholar 

  32. Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

    Article  Google Scholar 

  33. Tang, L. X.; Shang, J.; Jiang, X. Y. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 2021, 7, eabe3778.

    Article  CAS  Google Scholar 

  34. Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwodiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.

    Article  CAS  Google Scholar 

  35. Dai, Y. H.; Hu, H. W.; Wang, M.; Xu, J.; Wang, S. H. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 2021, 4, 17–29.

    Article  CAS  Google Scholar 

  36. Zheng, Y.; Yu, Z. A.; Zhang, S.; Kong, X.; Michaels, W.; Wang, W. C.; Chen, G.; Liu, D. Y.; Lai, J. C.; Prine, N. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 2021, 12, 5701.

    Article  CAS  Google Scholar 

  37. Sim, K.; Ershad, F.; Zhang, Y. C.; Yang, P. Y.; Shim, H.; Rao, Z.; Lu, Y. T.; Thukral, A.; Elgalad, A.; Xi, Y. T. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 2020, 3, 775–784.

    Article  CAS  Google Scholar 

  38. Sim, K.; Rao, Z.; Kim, H. J.; Thukral, A.; Shim, H.; Yu, C. J. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 2019, 5, eaav5749.

    Article  Google Scholar 

  39. Zhao, J. Q.; Bu, T. Z.; Zhang, X. H.; Pang, Y. K.; Li, W. J.; Zhang, Z.; Liu, G. X.; Wang, Z. L.; Zhang, C. Intrinsically stretchable organic-tribotronic-transistor for tactile sensing. Research 2020, 2020, 1398903.

    Article  CAS  Google Scholar 

  40. Wang, H. C.; Zhou, R. C.; Li, D. H.; Zhang, L. R.; Ren, G. Z.; Wang, L.; Liu, J. H.; Wang, D. Y.; Tang, Z. H.; Lu, G. et al. Highperformance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021, 15, 9690–9700.

    Article  Google Scholar 

  41. Zhou, K. K.; Xu, W. J. H.; Yu, Y. F.; Zhai, W.; Yuan, Z. Q.; Dai, K.; Zheng, G. Q.; Mi, L. W.; Pan, C. F.; Liu, C. T. et al. Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact-noncontact sensing. Smell 2021, 17, e2100542.

    Article  Google Scholar 

  42. Kumar, K. S.; Zhang, L.; Kalairaj, M. S.; Banerjee, H.; Xiao, X.; Jiayi, C. C.; Huang, H.; Lim, C. M.; Ouyang, J. Y.; Ren, H. L. Stretchable and sensitive silver nanowire-hydrogel strain sensors for proprioceptive actuation. ACS Appl. Mater. Interfaces 2021, 13, 37816–37829.

    Article  CAS  Google Scholar 

  43. Xu, X. P.; Zhang, G. J.; Yu, L. Y.; Li, R. P.; Peng, Q. P3HT-based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology. Adv. Mater. 2019, 31, 1906045.

    Article  CAS  Google Scholar 

  44. Nagarajan, K.; George, J.; Thomas, A.; Devaux, E.; Chervy, T.; Azzini, S.; Joseph, K.; Jouaiti, A.; Hosseini, M. W.; Kumar, A. et al. Conductivity and photoconductivity of a p-type organic semiconductor under ultrastrong coupling. ACS Nano 2020, 14, 10219–10225.

    Article  CAS  Google Scholar 

  45. Song, E.; Kang, B.; Choi, H. H.; Sin, D. H.; Lee, H.; Lee, W. H.; Cho, K. Stretchable and transparent organic semiconducting thin film with conjugated polymer nanowires embedded in an elastomeric matrix. Adv. Electron. Mater. 2016, 2, 1500250.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62074137), the Key Research, Development, and Promotion Program of Henan Province (No. 202102210004), and China Postdoctoral Science Foundation (No. 2021TQ0288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchao Mao.

Electronic Supplementary Material

12274_2022_4622_MOESM1_ESM.pdf

Intrinsically stretchable polymer semiconductor based electronic skin for multiple perceptions of force, temperature, and visible light

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zhu, P., Zhang, F. et al. Intrinsically stretchable polymer semiconductor based electronic skin for multiple perceptions of force, temperature, and visible light. Nano Res. 16, 1196–1204 (2023). https://doi.org/10.1007/s12274-022-4622-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4622-x

Keywords

Navigation