Skip to main content
Log in

Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The quest for solar-blind photodetectors with outstanding optoelectronic properties and weak signals detection capability is essential for their applications in the field of imaging, communication, warning, etc. To date, Ga2O3 has demonstrated potential for high-performance solar-blind photodetectors. However, the performance usually decays superlinearly at low light intensities due to carrier-trapping effect, which limits the weak signal detection capability of Ga2O3 photodetectors. Herein, a Ga2O3 solar-blind photodetector with ultra-thin absorbing medium has been designed to restrain trapping of photo-generated carriers during the transporting process by shortening the carrier transport distance. Meanwhile, multiple-beam interference is employed to enhance the absorption efficiency of the Ga2O3 layer using an Al/Al2O3/Ga2O3 structure. Based on the ultra-thin absorbing medium with enhanced absorption efficiency, a 7 × 7 flexible photodetector array is developed, and the detectivity can reach 1.7 × 1015 Jones, which is among the best values ever reported for Ga2O3 photodetectors. Notably, the performance of the photodetector decays little as the illumination intensity is as weak as 5 nW/cm2, revealing the capacity to detect ultra-weak signals. In addition, the flexible photodetector array can execute the functions of imaging, spatial distribution of light source intensity, real-time light trajectory detection, etc. Our results may provide a route to high-performance solar-blind photodetectors for ultra-weak light detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, P. Y.; Chettiar, U. K.; Cao, L. Y.; Afshinmanesh, F.; Engheta, N.; Brongersma, M. L. An invisible metal-semiconductor photodetector. Nat. Photonics 2012, 6, 380–385.

    Article  CAS  Google Scholar 

  2. Jayachandran, D.; Oberoi, A.; Sebastian, A.; Choudhury, T. H.; Shankar, B.; Redwing, J. M.; Das, S. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 2020, 3, 646–655.

    Article  Google Scholar 

  3. Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

    Article  CAS  Google Scholar 

  4. Polat, E. O.; Mercier, G.; Nikitskiy, I.; Puma, E.; Galan, T.; Gupta, S.; Montagut, M.; Piqueras, J. J.; Bouwens, M.; Durduran, T. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019, 5, 7846.

    Article  Google Scholar 

  5. Zhang, D.; Zheng, W.; Lin, R. C.; Li, Y. Q.; Huang, F. Ultrahigh EQE (15%) solar-blind UV photovoltaic detector with organic-inorganic heterojunction via dual built-in fields enhanced photogenerated carrier separation efficiency mechanism. Adv. Funct. Mater. 2019, 29, 1900935.

    Article  Google Scholar 

  6. Kong, W. Y.; Wu, G. A.; Wang, K. Y.; Zhang, T. F.; Zou, Y. F.; Wang, D. D.; Luo, L. B. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater. 2016, 28, 10725–10731.

    Article  CAS  Google Scholar 

  7. Lin, C. N.; Lu, Y. J.; Tian, Y. Z.; Gao, C. J.; Fan, M. M.; Yang, X.; Dong, L.; Shan, C. X. Diamond based photodetectors for solar-blind communication. Opt. Express 2019, 27, 29962–29971.

    Article  CAS  Google Scholar 

  8. Tang, X.; Ji, F. W.; Wang, H.; Jin, Z. J.; Li, H.; Li, B. K.; Wang, J. N. Temperature enhanced responsivity and speed in an AlGaN/GaN metal-heterostructure-metal photodetector. Appl. Phys. Lett. 2021, 119, 013503.

    Article  CAS  Google Scholar 

  9. Duan, Y. H.; Zhang, S. Q.; Cong, M. Y.; Jiang, D. Y.; Li, Q. C.; Zhao, X. J. Performance modulation of a MgZnO/ZnO heterojunction flexible UV photodetector by the piezophototronic effect. J. Mater. Chem. C 2020, 8, 12917–12926.

    Article  CAS  Google Scholar 

  10. Chikoidze, E.; Rogers, D. J.; Teherani, F. H.; Rubio, C.; Sauthier, G.; Von Bardeleben, H. J.; Tchelidze, T.; Ton-That, C.; Fellous, A.; Bove, P. et al. Puzzling robust 2D metallic conductivity in undoped β-Ga2O3 thin films. Mater. Today Phys. 2019, 8, 10–17.

    Article  Google Scholar 

  11. Wu, Z. Y.; Jiang, Z. X.; Ma, C. C.; Ruan, W.; Chen, Y.; Zhang, H.; Zhang, G. Q.; Fang, Z. L.; Kang, J. Y.; Zhang, T. Y. Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films. Mater. Today Phys. 2021, 17, 100356.

    Article  CAS  Google Scholar 

  12. Chen, Y. C.; Lu, Y. J.; Liao, M. Y.; Tian, Y. Z.; Liu, Q.; Gao, C. J.; Yang, X.; Shan, C. X. 3D solar-blind Ga2O3 photodetector array realized via origami method. Adv. Funct. Mater. 2019, 29, 1906040.

    Article  CAS  Google Scholar 

  13. Nagarajan, L.; De Souza, R. A.; Samuelis, D.; Valov, I.; Börger, A.; Janek, J.; Becker, K. D.; Schmidt, P. C.; Martin, M. A chemically driven insulator-metal transition in non-stoichiometric and amorphous gallium oxide. Nat. Mater. 2008, 7, 391–398.

    Article  CAS  Google Scholar 

  14. Wu, C.; He, C.; Guo, D.; Zhang, F.; Li, P.; Wang, S.; Liu, A.; Wu, F.; Tang, W. Vertical a/β-Ga2O3 phase junction nanorods array with graphene-silver nanowire hybrid conductive electrode for highperformance self-powered solar-blind photodetectors. Mater. Today Phys. 2020, 12, 100193.

    Article  Google Scholar 

  15. Li, K. Y.; Yang, X.; Tian, Y. Z.; Chen, Y. C.; Lin, C. N.; Zhang, Z. F.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Ga2O3 solar-blind positionsensitive detectors. Sci. China Phys., Mech. Astron. 2020, 63, 117312.

    Article  CAS  Google Scholar 

  16. Fang, Y. J.; Armin, A.; Meredith, P.; Huang, J. S. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 2019, 13, 1–4.

    Article  CAS  Google Scholar 

  17. Liang, H. L.; Cui, S. J.; Su, R.; Guan, P. F.; He, Y. H.; Yang, L. H.; Chen, L. M.; Zhang, Y. H.; Mei, Z. X.; Du, X. L. Flexible X-ray detectors based on amorphous Ga2O3 thin films. ACS Photonics 2019, 6, 351–359.

    Article  CAS  Google Scholar 

  18. Gao, Y.; Cansizoglu, H.; Polat, K. G.; Ghandiparsi, S.; Kaya, A.; Mamtaz, H. H.; Mayet, A. S.; Wang, Y. N.; Zhang, X. Z.; Yamada, T. et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics 2017, 11, 301–308.

    Article  CAS  Google Scholar 

  19. Qiao, B. S.; Zhang, Z. Z.; Xie, X. H.; Li, B. H.; Li, K. X.; Chen, X.; Zhao, H. F.; Liu, K. W.; Liu, L.; Shen, D. Z. Avalanche gain in metal-semiconductor-metal Ga2O3 solar-blind photodiodes. J. Phys. Chem. C 2019, 123, 18516–18520.

    Article  CAS  Google Scholar 

  20. Hu, W. D.; Li, Q.; Chen, X. S, Lu, W. Recent progress on advanced infrared photodetectors. Acta Phys. Sin. 2019, 68, 120701.

    Article  Google Scholar 

  21. Lei, S. D.; Sobhani, A.; Wen, F. F.; George, A.; Wang, Q. Z.; Huang, Y. H.; Dong, P.; Li, B.; Najmaei, S.; Bellah, J. et al. Ternary CuIn7Se11: Towards ultra-thin layered photodetectors and photovoltaic devices. Adv. Mater. 2014, 26, 7666–7672.

    Article  CAS  Google Scholar 

  22. Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24.

    Article  CAS  Google Scholar 

  23. Lee, K. T.; Lee, J. Y.; Seo, S.; Guo, L. J. Colored ultrathin hybrid photovoltaics with high quantum efficiency. Light:Sci. Appl. 2014, 3, e215.

    Article  Google Scholar 

  24. Kats, M. A.; Sharma, D.; Lin, J.; Genevet, P.; Blanchard, R.; Yang, Z.; Qazilbash, M. M.; Basov, D. N.; Ramanathan, S.; Capasso, F. Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 2012, 101, 221101.

    Article  Google Scholar 

  25. Wu, Z. X.; Wang, J.; Liu, Y. J.; Hou, S. H.; Liu, X. J.; Zhang, Q.; Cao, F. A review of spectral controlling for renewable energy harvesting and conserving. Mater. Today Phys. 2021, 18, 100388.

    Article  CAS  Google Scholar 

  26. Pak, S.; Lee, J.; Jang, A. R.; Kim, S.; Park, K. H.; Sohn, J. I.; Cha, S. Strain-engineering of contact energy barriers and photoresponse behaviors in monolayer MoS2 flexible devices. Adv. Funct. Mater. 2020, 30, 2002023.

    Article  CAS  Google Scholar 

  27. Lai, J. Y.; Hasan, N.; Swinnich, E.; Tang, Z.; Shin, S. H.; Kim, M.; Zhang, P. H.; Seo, J. H. Flexible crystalline β-Ga2O3 solar-blind photodetectors. J. Mater. Chem. C 2020, 8, 14732–14739.

    Article  CAS  Google Scholar 

  28. Wang, M.; Tian, W.; Cao, F. R.; Wang, M.; Li, L. Flexible and self-powered lateral photodetector based on inorganic perovskite CsPbI3-CsPbBr3 heterojunction nanowire array. Adv. Funct. Mater. 2020, 30, 1909771.

    Article  CAS  Google Scholar 

  29. Fink, Y.; Winn, J. N.; Fan, S. H.; Chen, C. P.; Michel, J.; Joannopoulos, J. D.; Thomas, E. L. A dielectric omnidirectional reflector. Science 1998, 282, 1679–1682.

    Article  CAS  Google Scholar 

  30. Dobrowolski, J. A. Versatile computer program for absorbing optical thin film systems. Appl. Opt. 1981, 20, 74–81.

    Article  CAS  Google Scholar 

  31. Yan, R. H.; Simes, R. J.; Coldren, L. A. Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors. IEEE Photonics Technol. Lett. 1989, 1, 273–275.

    Article  Google Scholar 

  32. Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

    Article  CAS  Google Scholar 

  33. Guo, R.; Su, J.; Yuan, H.; Zhang, P.; Lin, Z.; Zhang, J.; Chang, J.; Hao, Y. Surface functionalization modulates the structural and optoelectronic properties of two-dimensional Ga2O3. Mater. Today Phys. 2020, 12, 100192.

    Article  Google Scholar 

  34. Hu, G. C.; Shan, C. X.; Zhang, N.; Jiang, M. M.; Wang, S. P.; Shen, D. Z. High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process. Opt. Express 2015, 23, 13554–13561.

    Article  CAS  Google Scholar 

  35. Qin, Y.; Li, L. H.; Zhao, X. L.; Tompa, G. S.; Dong, H.; Jian, G. Z.; He, Q. M.; Tan, P. J.; Hou, X. H.; Zhang, Z. F. et al. Metal-semiconductor-metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics 2020, 7, 812–820.

    Article  CAS  Google Scholar 

  36. Zhuo, R. R.; Zeng, L. H.; Yuan, H. Y.; Wu, D.; Wang, Y. G.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019, 12, 183–189.

    Article  CAS  Google Scholar 

  37. Zhou, H. T.; Cong, L. J.; Ma, J. G.; Li, B. S.; Chen, M. Z.; Xu, H. Y.; Liu, Y. C. High gain broadband photoconductor based on amorphous Ga2O3 and suppression of persistent photoconductivity. J. Mater. Chem. C 2019, 7, 13149–13155.

    Article  CAS  Google Scholar 

  38. Chen, J. X.; Li, Z. L.; Ni, F. L.; Ouyang, W. X.; Fang, X. S. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Mater. Horiz. 2020, 7, 1828–1833.

    Article  CAS  Google Scholar 

  39. Li, Y.; Shi, Z. F.; Wang, L. T.; Chen, Y. C.; Liang, W. Q.; Wu, D.; Li, X. J.; Zhang, Y.; Shan, C. X.; Fang, X. S. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors. Mater. Horiz. 2020, 7, 1613–1622.

    Article  CAS  Google Scholar 

  40. Chen, X. H.; Ren, F. F.; Ye, J. D.; Gu, S. L. Gallium oxide-based solar-blind ultraviolet photodetectors. Semicond. Sci. Technol. 2020, 35, 023001.

    Article  CAS  Google Scholar 

  41. Katz, O.; Roichman, Y.; Bahir, G.; Tessler, N.; Salzman, J. Charge carrier mobility in field effect transistors: Analysis of capacitance-conductance measurements. Semicond. Sci. Technol. 2004, 20, 90–94.

    Article  Google Scholar 

  42. Chen, Y. C.; Zhang, K. K.; Yang, X.; Chen, X. X.; Sun, J. L.; Zhao, Q.; Li, K. Y.; Shan, C. X. Solar-blind photodetectors based on Mxenes-β-Ga2O3 schottky junctions. J. Phys. D:Appl. Phys. 2020, 53, 484001.

    Article  CAS  Google Scholar 

  43. Chen, Y. C.; Lu, Y. J.; Yang, X.; Li, S. F.; Li, K. Y.; Chen, X. X.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Bandgap engineering of gallium oxides by crystalline disorder. Mater. Today Phys 2021, 18, 100369.

    Article  CAS  Google Scholar 

  44. Li, Y.; Shi, Z. F.; Liang, W. Q.; Ma, J. L.; Chen, X.; Wu, D.; Tian, Y. T.; Li, X. J.; Shan, C. X.; Fang, X. S. Recent advances toward environment-friendly photodetectors based on lead-free metal halide perovskites and perovskite derivatives. Mater. Horiz. 2021, 8, 1367–1389.

    Article  CAS  Google Scholar 

  45. Li, S.; Yan, Z. Y.; Liu, Z.; Chen, J.; Zhi, Y. S.; Guo, D. Y.; Li, P. G.; Wu, Z. P.; Tang, W. H. A self-powered solar-blind photodetector with large Voc enhancing performance based on the PEDOT: PSS/Ga2O3 organic-inorganic hybrid heterojunction. J. Mater. Chem. C 2020, 8, 1292–1300.

    Article  CAS  Google Scholar 

  46. Xu, X. Y.; Hu, J. G.; Yin, Z. Y.; Xu, C. X. Photoanode current of large-area MoS2 ultrathin nanosheets with vertically mesh-shaped structure on indium tin oxide. ACS Appl. Mater. Interfaces 2014, 6, 5983–5987.

    Article  CAS  Google Scholar 

  47. Liu, Z.; Wang, X.; Liu, Y. Y.; Guo, D. Y.; Li, S.; Yan, Z. Y.; Tan, C. K.; Li, W. J.; Li, P. G.; Tang, W. H. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 schottky photodiode. J. Mater. Chem. C 2019, 7, 13920–13929.

    Article  CAS  Google Scholar 

  48. Lin, R. C.; Zheng, W.; Zhang, D.; Zhang, Z. J.; Liao, Q. X.; Yang, L.; Huang, F. High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication. ACS Appl. Mater. Interfaces 2018, 10, 22419–22426.

    Article  CAS  Google Scholar 

  49. Chen, X. H.; Xu, Y.; Zhou, D.; Yang, S.; Ren, F. F.; Lu, H.; Tang, K.; Gu, S. L.; Zhang, R.; Zheng Y. D. et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl. Mater. Interfaces 2017, 9, 36997–37005.

    Article  CAS  Google Scholar 

  50. Hou, X. H.; Sun, H. D.; Long, S. B.; Tompa, G. S.; Salagaj, T.; Qin, Y.; Zhang, Z. F.; Tan, P. J.; Yu, S. J.; Liu, M. Ultrahigh-performance solar-blind photodetector based on α-phase-dominated Ga2O3 film with record low dark current of 81 fA. IEEE Electron Device Lett. 2019, 40, 1483–1486.

    Article  CAS  Google Scholar 

  51. Kumar, N.; Arora, K.; Kumar, M. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes. J. Phys. D:Appl. Phys. 2019, 52, 335103.

    Article  CAS  Google Scholar 

  52. Tang, R. F.; Li, G. Q.; Li, C.; Li, J. C.; Zhang, Y. F.; Huang, K.; Ye, J. D.; Li, C.; Kang, J. Y.; Zhang, R. et al. Localized surface plasmon enhanced Ga2O3 solar blind photodetectors. Opt. Express 2020, 28, 5731–5740.

    Article  Google Scholar 

  53. Liu, Z.; Li, S.; Yan, Z. Y.; Liu, Y. Y.; Zhi, Y. S.; Wang, X.; Wu, Z. P.; Li, P. G.; Tang, W. H. Construction of a β-Ga2O3-based metal-oxide-semiconductor-structured photodiode for high-performance dual-mode solar-blind detector applications. J. Mater. Chem. C 2020, 8, 5071–5081.

    Article  CAS  Google Scholar 

  54. Dong, L. P.; Pang, T. Q.; Yu, J. G.; Wang, Y. C.; Zhu, W. G.; Zheng, H. D.; Yu, J. H.; Jia, R. X.; Chen, Z. Performance-enhanced solar-blind photodetector based on a CH3NH3PbI3/β-Ga2O3 hybrid structure. J. Mater. Chem. C 2019, 7, 14205–14211.

    Article  CAS  Google Scholar 

  55. Qin, Y.; Long, S. B.; He, Q. M.; Dong, H.; Jian, G. Z.; Zhang, Y.; Hou, X. H.; Tan, P. J.; Zhang, Z. F.; Lu, Y. J. et al. Amorphous gallium oxide-based gate-tunable high-performance thin film phototransistor for solar-blind imaging. Adv. Electron. Mater. 2019, 5, 1900389.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFB0406500), the National Natural Science Foundation of China (Nos. 61804136, U1804155, and 62027816), and China Postdoctoral Science Foundation (Nos. 2018M630829 and 2019T120630).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xun Yang, Yuan Zhang or Chongxin Shan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, X., Zhang, Y. et al. Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium. Nano Res. 15, 3711–3719 (2022). https://doi.org/10.1007/s12274-021-3942-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3942-6

Keywords

Navigation