Skip to main content
Log in

Enthalpy induced phase partition toward hierarchical, nanostructured high-entropy alloys

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterogeneous nanostructured metals are emerging strategies for achieving both high strength and ductility, which are particularly attractive for high entropy alloys (HEAs) to combine the synergistic enhancements from multielement composition, grain boundaries, and heterogeneity effects. However, the construction of heterogeneous nanostructured HEAs remains elusive and can involve delicate processes that are not practically scalable. Herein we report using composition design (i.e., enthalpy engineering) to create hierarchical, nanostructured HEAs as demonstrated by adding Ni into FeCrCoAlTi0.5 HEA. The strong enthalpic interaction between (Ni,Co) and (Al,Ti) pairs in FeCrCoAlTi0.5Nix (x = 0.5–1.5) induced phase partitions into B2 (ordered phase, hard) matrix and A2 (disordered phase, soft) precipitates, resulting in a hierarchical structure of B2 grains and sub-grains of near-coherent A2 nanodomains (∼ 12.5 nm) divided by A2 interdendritic regions. As a result, the FeCrCoAlTi0.5Ni1.5 HEA with this unique hierarchical nanostructure exhibits the best combination of strength and plasticity, i.e., a 2-fold increase in compressive strength (2.60 GPa) and significant enhancement of plastic strain (15.8%) as compared with the original FeCrCoAlTi0.5 HEA. Enthalpy analysis and simulation study reveal the phase partition process during cooling induced by an enthalpy-driven order-disorder transition while the order parameters illustrate the strong ordering in (Ni,Co)(Al,Ti)-rich B2 phase and high entropy mixing in less interactive FeCrCo-rich A2 phase. Our work therefore provides a strategy for hierarchical nanostructured HEA formation by composition design considering enthalpy and entropy interplay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

    Article  CAS  Google Scholar 

  2. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

    Article  CAS  Google Scholar 

  3. Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

    Article  CAS  Google Scholar 

  4. Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

    Article  CAS  Google Scholar 

  5. Gludovatz, B.; Hohenwarter, A.; Thurston, K. V. S.; Bei, H. B.; Wu, Z. G.; George, E. P.; Ritchie, R. O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602.

    Article  CAS  Google Scholar 

  6. Li, D. Y.; Zhang, Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 2016, 70, 24–28.

    Article  CAS  Google Scholar 

  7. Chuang, M. H.; Tsai, M. H.; Wang, W. R.; Lin, S. J.; Yeh, J. W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317.

    Article  CAS  Google Scholar 

  8. Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6, 7748.

    Article  Google Scholar 

  9. Li, Z. M.; Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227–230.

    Article  CAS  Google Scholar 

  10. Li, Z. M.; Tasan, C. C.; Springer, H.; Gault, B.; Raabe, D. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 2017, 7, 40704.

    Article  CAS  Google Scholar 

  11. Senkov, O. N.; Woodward, C.; Miracle, D. B. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM 2014, 66, 2030–2042.

    Article  CAS  Google Scholar 

  12. Senkov, O. N.; Senkova, S. V.; Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 2014, 68, 214–228.

    Article  CAS  Google Scholar 

  13. Senkov, O. N.; Wilks, G. B.; Miracle, D. B.; Chuang, C. P.; Liaw, P. K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765.

    Article  CAS  Google Scholar 

  14. Yurchenko, N. Y.; Stepanov, N. D.; Shaysultanov, D. G.; Tikhonovsky, M. A.; Salishchev, G. A. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater. Charact. 2016, 121, 125–134.

    Article  CAS  Google Scholar 

  15. Yurchenko, N. Y.; Stepanov, N. D.; Zherebtsov, S. V.; Tikhonovsky, M. A.; Salishchev, G. A. Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys. Mater. Sci. Eng. A 2017, 704, 82–90.

    Article  CAS  Google Scholar 

  16. Chen, C.; Zhang, H.; Fan, Y. Z.; Zhang, W. W.; Wei, R.; Wang, T.; Zhang, T.; Li, F. S. A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties. J. Magn. Magn. Mater. 2020, 502, 166513.

    Article  CAS  Google Scholar 

  17. Ching, W. Y.; San, S.; Brechtl, J.; Sakidja, R.; Zhang, M. Q.; Liaw, P. K. Fundamental electronic structure and multiatomic bonding in 13 biocompatible high-entropy alloys. npj Comput. Mater. 2020, 6, 45.

    Article  CAS  Google Scholar 

  18. Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K; Lu, Z. P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93.

    Article  CAS  Google Scholar 

  19. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 2011, 20, 817–822.

    Article  CAS  Google Scholar 

  20. Meyers, M. A.; Mishra, A.; Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556.

    Article  CAS  Google Scholar 

  21. Koch, C. C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 2003, 49, 657–662.

    Article  CAS  Google Scholar 

  22. Ma, E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 2003, 49, 663–668.

    Article  CAS  Google Scholar 

  23. Ma, E.; Zhu, T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 2017, 20, 323–331.

    Article  CAS  Google Scholar 

  24. Liu, S.; Gao, M. C.; Liaw, P. K.; Zhang, Y. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J. Alloys Compd. 2015, 619, 610–615.

    Article  CAS  Google Scholar 

  25. Zhou, Y. J.; Zhang, Y.; Wang, Y. L.; Chen, G. L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 2007, 90, 181904.

    Article  CAS  Google Scholar 

  26. Jiao, Z. B.; Luan, J. H.; Zhang, Z. W.; Miller, M. K.; Liu, C. T. High-strength steels hardened mainly by nanoscale NiAl precipitates. Scr. Mater. 2014, 87, 45–48.

    Article  CAS  Google Scholar 

  27. Zhou, Y.; Jin, X.; Zhang, L.; Du, X. Y.; Li, B. S. A hierarchical nanostructured Fe34Cr34Ni14Al14Co4 high-entropy alloy with good compressive mechanical properties. Mater. Sci. Eng. A 2018, 716, 235–239.

    Article  CAS  Google Scholar 

  28. Stepanov, N. D.; Shaysultanov, D. G.; Chernichenko, R. S.; Yurchenko, N. Y.; Zherebtsov, S. V.; Tikhonovsky, M. A.; Salishchev, G. A. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. J. Alloys Compd. 2017, 693, 394–405.

    Article  CAS  Google Scholar 

  29. Wang, W. R.; Wang, W. L.; Wang, S. C.; Tsai, Y. C.; Lai, C. H.; Yeh, J. W. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 2012, 26, 44–51.

    Article  CAS  Google Scholar 

  30. Liu, W. H.; Lu, Z. P.; He, J. Y.; Luan, J. H.; Wang, Z. J.; Liu, B.; Liu, Y.; Chen, M. W.; Liu, C. T. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 2016, 116, 332–342.

    Article  CAS  Google Scholar 

  31. Ming, K. S.; Bi, X. F.; Wang, J. Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scripta Mater. 2017, 137, 88–93.

    Article  CAS  Google Scholar 

  32. Wani, I. S.; Bhattacharjee, T.; Sheikh, S.; Bhattacharjee, P. P.; Guo, S.; Tsuji, N. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater. Sci. Eng. A 2016, 675, 99–109.

    Article  CAS  Google Scholar 

  33. Lu, Y. P.; Gao, X. Z.; Jiang, L.; Chen, Z. N.; Wang, T. M.; Jie, J. C.; Kang, H. J.; Zhang, Y. B.; Guo, S.; Ruan, H. H. et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017, 124, 143–150.

    Article  CAS  Google Scholar 

  34. Huang, H. L.; Wu, Y.; He, J. Y.; Wang, H.; Liu, X. J.; An, K.; Wu, W.; Lu, Z. P. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 2017, 26, 1701678.

    Article  CAS  Google Scholar 

  35. Gwalani, B.; Soni, V.; Lee, M.; Mantri, S.; Ren, Y.; Banerjee, R. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy. Mater. Des. 2017, 121, 254–260.

    Article  CAS  Google Scholar 

  36. Wang, Z. G.; Zhou, W.; Fu, L. M.; Wang, J. F.; Luo, R. C.; Han, X. C.; Chen, B.; Wang, X. D. Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy. Mater. Sci. Eng. A 2017, 696, 503–510.

    Article  CAS  Google Scholar 

  37. Zhao, Y. L.; Yang, T.; Tong, Y.; Wang, J.; Luan, J. H.; Jiao, Z. B.; Chen, D.; Yang, Y.; Hu, A.; Liu, C. T. et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017, 138, 72–82.

    Article  CAS  Google Scholar 

  38. Ma, Y.; Wang, Q.; Jiang, B. B.; Li, C. L.; Hao, J. M.; Li, X. N.; Dong, C.; Nieh, T. G. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2 (Ni, Co, Fe, Cr)14 compositions. Acta Mater. 2018, 147, 213–225.

    Article  CAS  Google Scholar 

  39. Li, C. L.; Ma, Y.; Hao, J. M.; Yan, Y.; Wang, Q.; Dong, C.; Liaw, P. K. Microstructures and mechanical properties of body-centered-cubic (Al, Ti)0.7(Ni, Co, Fe, Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation. Mater. Sci. Eng. A 2018, 737, 286–296.

    Article  CAS  Google Scholar 

  40. Stepanova, N. D.; Shaysultanov, D. G.; Tikhonovsky, M. A.; Zherebtsov, S. V. Structure and high temperature mechanical properties of novel non-equiatomic Fe-(Co, Mn)-Cr-Ni-Al-(Ti) high entropy alloys. Intermetallics 2018, 102, 140–151.

    Article  CAS  Google Scholar 

  41. He, J. Y.; Liu, W. H.; Wang, H.; Wu, Y.; Liu, X. J.; Nieh, T. G.; Lu, Z. P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014, 62, 105–113.

    Article  CAS  Google Scholar 

  42. Ming, K. S.; Bi, X. F.; Wang, J. Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates. Int. J. Plast. 2018, 100, 177–191.

    Article  CAS  Google Scholar 

  43. He, J. Y.; Wang, H.; Huang, H. L.; Xu, X. D.; Chen, M. W.; Wu, Y.; Liu, X. J.; Nieh, T. G.; An, K.; Lu, Z. P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016, 102, 187–196.

    Article  CAS  Google Scholar 

  44. Daoud, H. M.; Manzoni, A. M.; Wanderka, N.; Glatzel, U. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). JOM 2015, 67, 2271–2277.

    Article  CAS  Google Scholar 

  45. Guo, W.; Pei, Z. R.; Sang, X. H.; Poplawsky, J. D.; Bruschi, S.; Qu, J.; Raabe, D.; Bei, H. B. Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability. Acta Mater. 2019, 170, 176–186.

    Article  CAS  Google Scholar 

  46. Shi, P. J.; Ren, W. L.; Zheng, T. X.; Ren, Z. M.; Hou, X. L.; Peng, J. C.; Hu, P. F.; Gao, Y. F.; Zhong, Y. B.; Liaw, P. K. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 2019, 10, 489.

    Article  CAS  Google Scholar 

  47. Ma, E.; Wu, X. L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy. Nat. Commun. 2019, 10, 5623.

    Article  CAS  Google Scholar 

  48. Wu, X. L.; Zhu, Y. T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 2017, 5, 527–532.

    Article  CAS  Google Scholar 

  49. Committee, E. E1820-11e2 Standard Test Method for Measurement of Fracture Toughness; ASTM International: West Conshohocken, USA, 2011.

    Google Scholar 

  50. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092.

    Article  CAS  Google Scholar 

  51. Landau, D. P.; Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics; 4th ed.; Cambridge University Press: Cambridge, 2014.

    Book  Google Scholar 

  52. Santodonato, L. J.; Liaw, P. K.; Unocic, R. R.; Bei, H.; Morris, J. R. Predictive multiphase evolution in Al-containing high-entropy alloys. Nat. Commun. 2018, 9, 4520.

    Article  CAS  Google Scholar 

  53. Troparevsky, M. C.; Morris, J. R.; Kent, P. R. C.; Lupini, A. R.; Stocks, G. M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 2015, 5, 011041.

    Google Scholar 

  54. Zhang, L.; Zhou, D.; Li, B. S. Anomalous microstructure and excellent mechanical properties of Ni35Al21.67Cr21.67Fe21,67 high-entropy alloy with BCC and B2 structure. Mater. Lett. 2018, 216, 252–255.

    Article  CAS  Google Scholar 

  55. Manzoni, A.; Daoud, H.; Völkl, R.; Glatzel, U.; Wanderka, N. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 2013, 132, 212–215.

    Article  CAS  Google Scholar 

  56. Wei, C. B.; Du, X. H.; Lu, Y. P.; Jiang, H.; Li, T. J.; Wang, T. M. Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties. Int. J. Miner. Metall. Mater. 2020, 27, 1312–1317.

    Article  CAS  Google Scholar 

  57. Santodonato, L. J.; Zhang, Y.; Feygenson, M.; Parish, C. M.; Gao, M. C.; Weber, R. J. K.; Neuefeind, J. C.; Tang, Z.; Liaw, P. K. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 2015, 6, 5964.

    Article  CAS  Google Scholar 

  58. Singh, S.; Wanderka, N.; Murty, B. S.; Glatzel, U.; Banhart, J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011, 59, 182–190.

    Article  CAS  Google Scholar 

  59. Zhu, Y. T.; Ameyama, K.; Anderson, P. M.; Beyerlein, I. J.; Gao, H. J.; Kim, H. S.; Lavernia, E.; Mathaudhu, S.; Mughrabi, H.; Ritchie, R. O. et al. Heterostructured materials: Superior properties from hetero-zone interaction. Mater. Res. Lett. 2021, 9, 1–31.

    Article  CAS  Google Scholar 

  60. Yao, Y. G.; Huang, Z. N.; Hughes, L. A.; Gao, J. L.; Li, T. Y.; Morris, D.; Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z. et al. Extreme mixing in nanoscale transition metal alloys. Matter 2021, 4, 2340–2353.

    Article  CAS  Google Scholar 

  61. Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 52061160483, 52022100, and 52101255). The authors are also grateful to the Analytical and Testing Center, Huazhong University of Science and Technology for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonggang Yao or Lin Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Yu, L., Liu, Z. et al. Enthalpy induced phase partition toward hierarchical, nanostructured high-entropy alloys. Nano Res. 15, 4893–4901 (2022). https://doi.org/10.1007/s12274-021-3912-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3912-z

Keywords

Navigation