Skip to main content
Log in

Recent advances in flexible batteries: From materials to applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Along with the rapid development of flexible and wearable electronic devices, there have been a strong demand for flexible power sources, which has in turn triggered considerable efforts on the research and development of flexible batteries. An ideal flexible battery would have not only just high electrochemical performance but also excellent mechanical deformabilities. Therefore, battery constituent components, chemistry systems, device configurations, and practical applications are all pivotal aspects that should be thoroughly considered. Herein, we systematically and comprehensively review the fundamentals and recent progresses of flexible batteries in terms of these important aspects. Specifically, we first discuss the requirements for constituent components, including the current collector, electrolyte, and separator, in flexible batteries. We then elucidate battery chemistry systems that have been studied for various flexible batteries, including lithium-ion batteries, non-lithium-ion batteries, and high-energy metal batteries. This is followed by discussions on the device configurations for flexible batteries, including one-dimensional fiber-shaped, two-dimensional film-shaped, and three-dimensional structural batteries. Finally, we summarize recent efforts in exploring practical applications for flexible batteries. Current challenges and future opportunities for the research and development of flexible batteries are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, W. G.; Guo, J. H.; Fan, D. L. 3D graphite-polymer flexible strain sensors with ultrasensitivity and durability for real-time human vital sign monitoring and musical instrument education. Adv. Mater. Technol. 2017, 2, 1700070.

    Google Scholar 

  2. Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E. et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 2015, 27, 2433–2439.

    CAS  Google Scholar 

  3. Xie, K. Y.; Wei, B. Q. Materials and structures for stretchable energy storage and conversion devices. Adv. Mater. 2014, 26, 3592–3617.

    CAS  Google Scholar 

  4. Zhai, Q. F.; Xiang, F. W.; Cheng, F.; Sun, Y. J.; Yang, X. P; Lu, W.; Dai, L. M. Recent advances in flexible/stretchable batteries and integrated devices. Energy Storage Mater. 2020, 33, 116–138.

    Google Scholar 

  5. He, Y. H.; Matthews, B.; Wang, J. Y.; Song, L.; Wang, X.; Wu, G. Innovation and challenges in materials design for flexible rechargeable batteries: From 1D to 3D. J. Mater. Chem. A 2018, 6, 735–753.

    CAS  Google Scholar 

  6. Kong, L.; Tang, C.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Advanced energy materials for flexible batteries in energy storage: A review. SmartMat 2020, 1, e1007.

    Google Scholar 

  7. Zeng, L. C.; Qiu, L.; Cheng, H. M. Towards the practical use of flexible lithium ion batteries. Energy Storage Mater. 2019, 23, 434–438.

    Google Scholar 

  8. Yang, Y. A mini-review: Emerging all-solid-state energy storage electrode materials for flexible devices. Nanoscale 2020, 12, 3560–3573.

    CAS  Google Scholar 

  9. Bocchetta, P.; Frattini, D.; Ghosh, S.; Mohan, A. M. V.; Kumar, Y.; Kwon, Y. Soft materials for wearable/flexible electrochemical energy conversion, storage, and biosensor devices. Materials 2020, 13, 2733.

    CAS  Google Scholar 

  10. Lin, L. Y.; Ning, H. M.; Song, S. F.; Xu, C. H.; Hu, N. Flexible electrochemical energy storage: The role of composite materials. Compos. Sci. Technol. 2020, 192, 108102.

    CAS  Google Scholar 

  11. Qian, G. Y.; Liao, X. B.; Zhu, Y. X.; Pan, F.; Chen, X.; Yang, Y. Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 2019, 4, 690–701.

    CAS  Google Scholar 

  12. Tao, T.; Lu, S. G.; Chen, Y. A review of advanced flexible lithium-ion batteries. Adv. Mater. Technol. 2018, 3, 1700375.

    Google Scholar 

  13. Foreman, E.; Zakri, W.; Sanatimoghaddam, M. H.; Modjtahedi, A.; Pathak, S.; Kashkooli, A. G.; Garafolo, N. G.; Farhad, S. A review of inactive materials and components of flexible lithium-ion batteries. Adv. Sustainable Syst. 2017, 1, 1700061.

    Google Scholar 

  14. Zhao, Y. F.; Guo, J. C. Development of flexible Li-ion batteries for flexible electronics. InfoMat 2020, 2, 866–878.

    CAS  Google Scholar 

  15. Liu, Y.; Sun, Z. H.; Tan, K.; Denis, D. K.; Sun, J. F.; Liang, L. W.; Hou, L. R.; Yuan, C. Z. Recent progress in flexible non-lithium based rechargeable batteries. J. Mater. Chem. A 2019, 7, 4353–4382.

    CAS  Google Scholar 

  16. Zhang, E. J.; Jia, X. X.; Wang, B.; Wang, J.; Yu, X. Z.; Lu, B. G. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv. Sci. 2020, 7, 2000470.

    CAS  Google Scholar 

  17. Duan, H.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Shi, J. L.; Shi, Y.; Wen, R.; Guo, Y. G.; Wan, L. J. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 2018, 10, 85–91.

    Google Scholar 

  18. Wang, Z. H.; Pan, R. J.; Sun, R.; Edström, K.; Strømme, M.; Nyholm, L. Nanocellulose structured paper-based lithium metal batteries. ACS Appl. Energy Mater. 2018, 1, 4341–4350.

    CAS  Google Scholar 

  19. Wu, N.; Shi, Y. R.; Lang, S. Y.; Zhou, J. M.; Liang, J. Y.; Wang, W.; Tan, S. J.; Yin, Y. X.; Wen, R.; Guo, Y. G. Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew. Chem., Int. Ed. 2019, 55, 18146–18149.

    Google Scholar 

  20. Wang, C. Y.; Zheng, Z. J.; Feng, Y. Q.; Ye, H.; Cao, F. F.; Guo, Z. P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817.

    CAS  Google Scholar 

  21. Gong, Y. H.; Fu, K.; Xu, S. M.; Dai, J. Q.; Hamann, T. R.; Zhang, L.; Hitz, G. T.; Fu, Z. Z.; Ma, Z. H.; McOwen, D. W. et al. Lithiumion conductive ceramic textile: A new architecture for flexible solidstate lithium metal batteries. Mater. Today 2018, 21, 594–601.

    CAS  Google Scholar 

  22. Wang, S. J.; Xiong, P.; Zhang, J. Q.; Wang, G. X. Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Mater. 2020, 29, 310–331.

    Google Scholar 

  23. Wang, Z. S.; Xu, X. J.; Ji, S. M.; Liu, Z. B.; Zhang, D. C.; Shen, J. D.; Liu, J. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries. J. Mater. Sci. Technol. 2020, 55, 56–72.

    CAS  Google Scholar 

  24. Peng, H. J.; Huang, J. Q.; Zhang, Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 2017, 46, 5237–5288.

    CAS  Google Scholar 

  25. Gao, Y.; Guo, Q. Y.; Zhang, Q.; Cui, Y.; Zheng, Z. J. Fibrous materials for flexible Li-S battery. Adv. Energy Mater. 2021, 11, 2002580.

    CAS  Google Scholar 

  26. Ye, L.; Hong, Y.; Liao, M.; Wang, B. J.; Wei, D. C.; Peng, H. S.; Ye, L.; Hong, Y.; Liao, M.; Wang, B. et al. Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater. 2020, 28, 364–374.

    Google Scholar 

  27. Zhou, J. W.; Cheng, J. L.; Wang, B.; Peng, H. S.; Lu, J. Flexible metal-gas batteries: A potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 2020, 13, 1933–1970.

    CAS  Google Scholar 

  28. Kwon, Y. H.; Woo, S. W.; Jung, H. R.; Yu, H. K.; Kim, K.; Oh, B. H.; Ahn, S.; Lee, S. Y.; Song, S. W.; Cho, J. et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 2012, 24, 5192–5197.

    CAS  Google Scholar 

  29. Koo, M.; Park, K. I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012, 12, 4810–4816.

    CAS  Google Scholar 

  30. Qian, G. Y.; Zhu, B.; Liao, X. B.; Zhai, H. W.; Srinivasan, A.; Fritz, N. J.; Cheng, Q.; Ning, M. Q.; Qie, B. Y.; Li, Y. et al. Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density. Adv. Mater. 2018, 30, 1704947.

    Google Scholar 

  31. Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.

    CAS  Google Scholar 

  32. Kim, S. W.; Cho, K. Y. Current collectors for flexible lithium ion batteries: A review of materials. J. Electrochem. Sci. Technol. 2015, 6, 1–6.

    Google Scholar 

  33. Li, Q.; Ardebili, H. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte. J. Power Sources 2016, 303, 17–21.

    Google Scholar 

  34. Gockeln, M.; Glenneberg, J.; Busse, M.; Pokhrel, S.; Mädler, L.; Kun, R. Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries. Nano Energy 2018, 49, 564–573.

    CAS  Google Scholar 

  35. Jeon, H.; Cho, I.; Jo, H.; Kim, K.; Ryou, M. H.; Lee, Y. M. Highly rough copper current collector: Improving adhesion property between a silicon electrode and current collector for flexible lithiumion batteries. RSC Adv. 2017, 7, 35681–35686.

    CAS  Google Scholar 

  36. Wang, C.; Cao, Y. H.; Luo, Z. P.; Li, G. Z.; Xu, W. L.; Xiong, C. X.; He, G. Q.; Wang, Y. D.; Li, S.; Liu, H. et al. Flexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for highperformance advanced lithium-ion battery. Chem. Eng. J. 2017, 307, 382–388.

    CAS  Google Scholar 

  37. Zhao, J.; Ren, H.; Liang, Q. H.; Yuan, D.; Xi, S. B.; Wu, C.; Manalastas, W. Jr.; Ma, J. M.; Fang, W.; Zheng, Y. et al. Highperformance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy 2019, 62, 94–102.

    CAS  Google Scholar 

  38. Zhang, Y.; Wang, L.; Guo, Z. Y.; Xu, Y. F.; Wang, Y. G.; Peng, H. S. High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem., Int. Ed. 2016, 55, 4487–4491.

    CAS  Google Scholar 

  39. Lee, K. L.; Jung, J. Y.; Lee, S. W.; Moon, H. S.; Park, J. W. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources 2004, 129, 270–274.

    CAS  Google Scholar 

  40. Kim, Y. L.; Sun, Y. K.; Lee, S. M. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochim. Acta 2008, 53, 4500–4504.

    CAS  Google Scholar 

  41. Park, M. H.; Noh, M.; Lee, S.; Ko, M.; Chae, S.; Sim, S.; Choi, S.; Kim, H.; Nam, H.; Park, S. et al. Flexible high-energy Li-ion batteries with fast-charging capability. Nano Lett. 2014, 14, 4083–4089.

    CAS  Google Scholar 

  42. Zhao, Z. X.; Wu, H. Q. Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods. Nano Res. 2019, 12, 2477–2484.

    CAS  Google Scholar 

  43. Yun, J. H.; Han, G. B.; Lee, Y. M.; Lee, Y. G.; Kim, K. M.; Park, J. K.; Cho, K. Y. Low resistance flexible current collector for lithium secondary battery. Electrochem. Solid-State Lett. 2011, 14, A116.

    CAS  Google Scholar 

  44. Choi, J. Y.; Lee, D. J.; Lee, Y. M.; Lee, Y. G.; Kim, K. M.; Park, J. K.; Cho, K. Y. Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes. Adv. Funct. Mater. 2013, 23, 2108–2114.

    CAS  Google Scholar 

  45. Wang, J. Z.; Chou, S. L.; Chen, J.; Chew, S. Y.; Wang, G. X.; Konstantinov, K.; Wu, J.; Dou, S. X.; Liu, H. K. Paper-like freestanding polypyrrole and polypyrrole-LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochem. Commun. 2008, 10, 1781–1784.

    CAS  Google Scholar 

  46. Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769.

    CAS  Google Scholar 

  47. Aliahmad, N.; Liu, Y. D.; Xie, J.; Agarwal, M. V2O5/graphene hybrid supported on paper current collectors for flexible ultrahighcapacity electrodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 16490–16499.

    CAS  Google Scholar 

  48. Yehezkel, S.; Auinat, M.; Sezin, N.; Starosvetsky, D.; Ein-Eli, Y. Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors. J. Power Sources 2016, 312, 109–115.

    CAS  Google Scholar 

  49. Yitzhack, N.; Auinat, M.; Sezin, N.; Ein-Eli, Y. Carbon nanotube tissue as anode current collector for flexible Li-ion batteries-understanding the controlling parameters influencing the electrochemical performance. APL Mater. 2018, 6, 111102.

    Google Scholar 

  50. Sun, L. M.; Wang, X. H.; Wang, Y. R.; Zhang, Q. Roles of carbon nanotubes in novel energy storage devices. Carbon 2017, 122, 462–474.

    CAS  Google Scholar 

  51. Jia, L. J.; Wang, J.; Chen, Z. J.; Su, Y. P.; Zhao, W.; Wang, D. T.; Wei, Y.; Jiang, K. L.; Wang, J. P.; Wu, Y. et al. High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes. Nano Res. 2019, 12, 1105–1113.

    CAS  Google Scholar 

  52. Hori, K.; Yamada, Y.; Momma, T.; Noda, S. High-energy density LixSi-S full cell based on 3D current collector of few-wall carbon nanotube sponge. Carbon 2020, 161, 612–621.

    CAS  Google Scholar 

  53. Zhou, Z. Y.; Si, W. P.; Lu, P. Y.; Guo, W. L.; Wang, L.; Zhang, T.; Hou, F.; Liang, J. A flexible CNT@nickel silicate composite film for high-performance sodium storage. J. Energy Chem. 2020, 47, 29–37.

    Google Scholar 

  54. Lu, H. R.; Hagberg, J.; Lindbergh, G.; Cornell, A. Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries. Nano Energy 2017, 39, 140–150.

    CAS  Google Scholar 

  55. Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium-sulfur batteries. Nano Res. 2017, 10, 4027–4054.

    CAS  Google Scholar 

  56. Yang, H.; Wang, M.; Liu, X. W.; Jiang, Y.; Yu, Y. MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 2018, 11, 3844–3853.

    CAS  Google Scholar 

  57. Chen, X.; Zhao, Z.; Zhou, Y.; Shu, Y.; Sajjad, M.; Bi, Q. S.; Ren, Y.; Wang, X.; Zhou, X. W.; Liu, Z. MWCNTs modified α-Fe2O3 nanoparticles as anode active materials and carbon nanofiber paper as a flexible current collector for lithium-ion batteries application. J. Alloys Compd. 2019, 776, 974–983.

    CAS  Google Scholar 

  58. Kretschmer, K.; Sun, B.; Xie, X. Q.; Chen, S. Q.; Wang, G. X. A free-standing LiFePO4-carbon paper hybrid cathode for flexible lithium-ion batteries. Green Chem. 2016, 18, 2691–2698.

    CAS  Google Scholar 

  59. Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 6105–6112.

    CAS  Google Scholar 

  60. Cao, Z. X.; Zhang, J.; Ding, Y. M.; Li, Y. L.; Shi, M. J.; Yue, H. Y.; Qiao, Y.; Yin, Y. H.; Yang, S. T. In situ synthesis of flexible elastic N-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries. J. Mater. Chem. A 2016, 4, 8636–8644.

    CAS  Google Scholar 

  61. Yang, L. Y.; Li, H. Z.; Cheng, L. Z.; Li, S. T.; Liu, J.; Min, J.; Zhu, K. J.; Wang, H.; Lei, M. A three-dimensional surface modified carbon cloth designed as flexible current collector for highperformance lithium and sodium batteries. J. Alloys Compd. 2017, 726, 837–845.

    CAS  Google Scholar 

  62. Rana, K.; Singh, J.; Lee, J. T.; Park, J. H.; Ahn, J. H. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 11158–11166.

    CAS  Google Scholar 

  63. Liu, Y.; Yao, M. J.; Zhang, L. L.; Niu, Z. Q. Large-scale fabrication of reduced graphene oxide-sulfur composite films for flexible lithium-sulfur batteries. J. Energy Chem. 2019, 38, 199–206.

    Google Scholar 

  64. Wu, Z. P.; Wang, Y. L.; Liu, X. B.; Lv, C.; Li, Y. S.; Wei, D.; Liu, Z. F. Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 2019, 31, 1800716.

    Google Scholar 

  65. Noerochim, L.; Wang, J. Z.; Chou, S. L.; Wexler, D.; Liu, H. K. Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 2012, 50, 1289–1297.

    CAS  Google Scholar 

  66. Zhu, P.; Yan, C. Y.; Zhu, J. D.; Zang, J.; Li, Y.; Jia, H.; Dong, X.; Du, Z.; Zhang, C. M.; Wu, N. Q. et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 2019, 17, 220–225.

    Google Scholar 

  67. Wang, K.; Luo, S.; Wu, Y.; He, X. F.; Zhao, F.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 2013, 23, 846–853.

    CAS  Google Scholar 

  68. Wang, Y.; Kong, D. Z.; Huang, S. Z.; Shi, Y. M.; Ding, M.; Von Lim, Y.; Xu, T. T.; Chen, F. M.; Li, X. J.; Yang, H. Y. 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem. A 2018, 6, 10813–10824.

    CAS  Google Scholar 

  69. Chong, W. G.; Xiao, Y. H.; Huang, J. Q.; Yao, S. S.; Cui, J.; Qin, L.; Gao, C.; Kim, J. K. Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium-sulfur batteries. Nanoscale 2018, 10, 21132–21141.

    CAS  Google Scholar 

  70. Zhong, Y. T.; Pan, Z. H.; Wang, X. S.; Yang, J.; Qiu, Y. C.; Xu, S. Y.; Lu, Y. T.; Huang, Q. M.; Li, W. S. Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery. Adv. Sci. 2019, 6, 1802243.

    Google Scholar 

  71. Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018, 28, 1804560.

    Google Scholar 

  72. Li, Z.; Borodin, O.; Smith, G. D.; Bedrov, D. Effect of organic solvents on Li+ ion solvation and transport in ionic liquid electrolytes: A molecular dynamics simulation study. J. Phys. Chem. B 2015, 119, 3085–3096.

    CAS  Google Scholar 

  73. Howlett, P. C.; Brack, N.; Hollenkamp, A. F.; Forsyth, M.; MacFarlane, D. R. Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl)amide room-temperature ionic liquid electrolytes. J. Electrochem. Soc. 2006, 153, A595–A606.

    CAS  Google Scholar 

  74. Kuang, Y. D.; Chen, C. J.; Pastel, G.; Li, Y. J.; Song, J. W.; Mi, R. Y.; Kong, W. Q.; Liu, B. Y.; Jiang, Y. Q.; Yang, K. et al. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 2018, 8, 1802398.

    Google Scholar 

  75. Kong, D. Z.; Wang, Y.; Huang, S. Z.; Von Lim, Y.; Zhang, J.; Sun, L. F.; Liu, B.; Chen, T. P.; Valdivia y Alvarado, P.; Yang, H. Y. Surface modification of Na2Ti3O7 nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability. J. Mater. Chem. A 2019, 7, 12751–12762.

    CAS  Google Scholar 

  76. Chang, J.; Shang, J.; Sun, Y. M.; Ono, L. K.; Wang, D. R.; Ma, Z. J.; Huang, Q. Y.; Chen, D. D.; Liu, G. Q.; Cui, Y. et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 2018, 9, 4480.

    Google Scholar 

  77. Wang, J.; Zhang, L.; Zhou, Q. W.; Wu, W. L.; Zhu, C.; Liu, Z. Q.; Chang, S. Z.; Pu, J.; Zhang, H. G. Ultra-flexible lithium ion batteries fabricated by electrodeposition and solvothermal synthesis. Electrochim. Acta 2017, 237, 119–126.

    CAS  Google Scholar 

  78. Zhang, W.; Liu, Y. T.; Chen, C. J.; Li, Z.; Huang, Y. H.; Hu, X. L. Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 2015, 11, 3822–3829.

    CAS  Google Scholar 

  79. Pan, R. J.; Cheung, O.; Wang, Z. H.; Tammela, P.; Huo, J. X.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Mesoporous Cladophora cellulose separators for lithium-ion batteries. J. Power Sources 2016, 321, 185–192.

    CAS  Google Scholar 

  80. Pan, R. J.; Wang, Z. H.; Sun, R.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose 2017, 24, 2903–2911.

    CAS  Google Scholar 

  81. Leijonmarck, S.; Cornell, A.; Lindbergh, G.; Wågberg, L. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J. Mater. Chem. A 2013, 1, 4671–4677.

    CAS  Google Scholar 

  82. Kim, J. H.; Kim, J. H.; Kim, J. M.; Lee, Y. G.; Lee, S. Y. Superlattice crystals-mimic, flexible/functional ceramic membranes: Beyond polymeric battery separators. Adv. Energy Mater. 2015, 5, 1500954.

    Google Scholar 

  83. Suriyakumar, S.; Raja, M.; Angulakshmi, N.; Nahm, K. S.; Stephan, A. M. A flexible zirconium oxide based-ceramic membrane as a separator for lithium-ion batteries. RSC Adv. 2016, 6, 92020–92027.

    CAS  Google Scholar 

  84. Raja, M.; Angulakshmi, N.; Thomas, S.; Kumar, T. P.; Stephan, A. M. Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries. J. Membr. Sci. 2014, 471, 103–109.

    CAS  Google Scholar 

  85. Lu, Q. W.; He, Y. B.; Yu, Q. P.; Li, B. H.; Kaneti, Y. V.; Yao, Y. W.; Kang, F. Y.; Yang, Q. H. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 2017, 29, 1604460.

    Google Scholar 

  86. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    CAS  Google Scholar 

  87. Zhao, N. N.; Wu, F.; Xing, Y.; Qu, W. J.; Chen, N.; Shang, Y. X.; Yan, M. X.; Li, Y. J.; Li, L.; Chen, R. J. Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 15537–15542.

    CAS  Google Scholar 

  88. Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

    Google Scholar 

  89. Shen, W.; Li, K.; Lv, Y. Y.; Xu, T.; Wei, D.; Liu, Z. F. Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications. Adv. Energy Mater. 2020, 10, 1904281.

    CAS  Google Scholar 

  90. Li, S. Q.; Zhang, D.; Meng, X. Y.; Huang, Q. A.; Sun, C. W.; Wang, Z. L. A flexible lithium-ion battery with quasi-solid gel electrolyte for storing pulsed energy generated by triboelectric nanogenerator. Energy Storage Mater. 2018, 12, 17–22.

    Google Scholar 

  91. Fan, W.; Li, N. W.; Zhang, X. L.; Zhao, S. Y.; Cao, R.; Yin, Y. Y.; Xing, Y.; Wang, J. N.; Guo, Y. G.; Li, C. J. A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv. Sci. 2018, 5, 1800559.

    Google Scholar 

  92. Balo, L.; Shalu; Gupta, H.; Singh, V. K.; Singh, R. K. Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim. Acta 2017, 230, 123–131.

    CAS  Google Scholar 

  93. Tan, M. J.; Li, B.; Chee, P.; Ge, X. M.; Liu, Z. L.; Zong, Y.; Loh, X. J. Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries. J. Power Sources 2018, 400, 566–571.

    CAS  Google Scholar 

  94. Nakayama, M.; Wada, S.; Kuroki, S.; Nogami, M. Factors affecting cyclic durability of all-solid-state lithiumpolymer batteries using poly (ethylene oxide)-based solid polymer electrolytes. Energy Environ. Sci. 2010, 3, 1995–2002.

    CAS  Google Scholar 

  95. Tang, C. Y.; Hackenberg, K.; Fu, Q.; Ajayan, P. M.; Ardebili, H. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett. 2012, 12, 1152–1156.

    CAS  Google Scholar 

  96. Wang, M.; Xu, N. N.; Fu, J.; Liu, Y. Y.; Qiao, J. L. Highperformance binary cross-linked alkaline anion polymer electrolyte membranes for all-solid-state supercapacitors and flexible rechargeable zinc-air batteries. J. Mater. Chem. A 2019, 7, 11257–11264.

    CAS  Google Scholar 

  97. Cao, J.; Wang, L.; He, X. M.; Fang, M.; Gao, J.; Li, J. J.; Deng, L. F.; Chen, H.; Tian, G. Y.; Wang, J. L. et al. In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5955–5961.

    CAS  Google Scholar 

  98. Cao, J.; Wang, L.; Shang, Y. M.; Fang, M.; Deng, L. F.; Gao, J.; Li, J. J.; Chen, H.; He, X. M. Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochim. Acta 2013, 111, 674–679.

    CAS  Google Scholar 

  99. Lee, Y. S.; Ju, S. H.; Kim, J. H.; Hwang, S. S.; Choi, J. M.; Sun, Y. K.; Kim, H.; Scrosati, B.; Kim, D. W. Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteries. Electrochem. Commun. 2012, 17, 18–21.

    CAS  Google Scholar 

  100. Ju, S. H.; Lee, Y. S.; Sun, Y. K.; Kim, D. W. Unique core-shell structured SiO2(Li+) nanoparticles for high-performance composite polymer electrolytes. J. Mater. Chem. A 2013, 1, 395–401.

    CAS  Google Scholar 

  101. Kil, E. H.; Choi, K. H.; Ha, H. J.; Xu, S.; Rogers, J. A.; Kim, M. R.; Lee, Y. G.; Kim, K. M.; Cho, K. Y.; Lee, S. Y. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv. Mater. 2013, 25, 1395–1400.

    CAS  Google Scholar 

  102. Kim, J. K.; Lim, Y. J.; Kim, H.; Cho, G. B.; Kim, Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ. Sci. 2015, 8, 3589–3596.

    CAS  Google Scholar 

  103. Wang, T. R.; Zhang, R. Q.; Wu, Y. M.; Zhu, G. N.; Hu, C. C.; Wen, J. Y.; Luo, W. Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries. J. Energy Chem. 2020, 46, 187–190.

    Google Scholar 

  104. Pan, K. C.; Zhang, L.; Qian, W. W.; Wu, X. K.; Dong, K.; Zhang, H. T.; Zhang, S. J. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 2020, 32, 2000399.

    CAS  Google Scholar 

  105. Jiang, T. L.; He, P. G.; Wang, G. X.; Shen, Y.; Nan, C. W.; Fan, L. Z. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 2020, 10, 1903376.

    CAS  Google Scholar 

  106. Yang, L. Y.; Wang, Z. J.; Feng, Y. C.; Tan, R.; Zuo, Y. X.; Gao, R. T.; Zhao, Y.; Han, L.; Wang, Z. Q.; Pan, F. Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701437.

    Google Scholar 

  107. Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182–3187.

    CAS  Google Scholar 

  108. He, Z. J.; Chen, L.; Zhang, B. C.; Liu, Y. C.; Fan, L. Z. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 2018, 392, 232–238.

    CAS  Google Scholar 

  109. Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074.

    CAS  Google Scholar 

  110. Gaikwad, A. M.; Whiting, G. L.; Steingart, D. A.; Arias, A. C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 2011, 23, 3251–3255.

    CAS  Google Scholar 

  111. Saunier, J.; Alloin, F.; Sanchez, J. Y.; Caillon, G. Thin and flexible lithium-ion batteries: Investigation of polymer electrolytes. J. Power Sources 2003, 119–121, 454–459.

    Google Scholar 

  112. Wang, J. Z.; Too, C. O.; Wallace, G. G. A highly flexible polymer fibre battery. J. Power Sources 2005, 150, 223–228.

    CAS  Google Scholar 

  113. Abouimrane, A.; Abu-Lebdeh, Y.; Alarco, P. J.; Armand, M. Plastic crystal-lithium batteries: An effective ambient temperature all-solid-state power source. J. Electrochem. Soc. 2004, 151, A1028–A1031.

    CAS  Google Scholar 

  114. Berg, E. J.; Villevieille, C.; Streich, D.; Trabesinger, S.; Novák, P. Rechargeable batteries: Grasping for the limits of chemistry. J. Electrochem. Soc. 2015, 162, A2468–A2475.

    CAS  Google Scholar 

  115. Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Jiang, L. W.; Rong, X. H.; Hu, Y. S.; Li, H.; Chen, L. Q. Novel methods for sodium-ion battery materials. Small Methods 2017, 1, 1600063.

    Google Scholar 

  116. Wang, Q. D.; Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Zheng, Y. H.; Qi, Y. R.; Rong, X. H.; Jiang, L. W.; Qi, X. G.; Shao, Y. J. et al. Advanced nanostructured anode materials for sodium-ion batteries. Small 2017, 13, 1701835.

    Google Scholar 

  117. Fang, Y. J.; Liu, Q.; Xiao, L. F.; Rong, Y. C.; Liu, Y. D.; Chen, Z. X.; Ai, X. P.; Cao, Y. L.; Yang, H. X.; Xie, J. et al. A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries. Chem 2018, 4, 1167–1180.

    CAS  Google Scholar 

  118. Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624.

    CAS  Google Scholar 

  119. Xu, Y. S.; Duan, S. Y.; Sun, Y. G.; Bin, D. S.; Tao, X. S.; Zhang, D.; Liu, Y.; Cao, A. M.; Wan, L. J. Recent developments in electrode materials for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4334–4352.

    CAS  Google Scholar 

  120. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 2018, 28, 1802938.

    Google Scholar 

  121. Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.

    CAS  Google Scholar 

  122. Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1939–1964.

    CAS  Google Scholar 

  123. Goodenough, J. B. Energy storage materials: A perspective. Energy Storage Mater. 2015, 1, 158–161.

    Google Scholar 

  124. Liu, Y. T.; Zhu, X. D.; Duan, Z. Q.; Xie, X. M. Flexible and robust MoS2-graphene hybrid paper cross-linked by a polymer ligand: A high-performance anode material for thin film lithium-ion batteries. Chem. Commun. 2013, 49, 10305–10307.

    CAS  Google Scholar 

  125. Bao, J. J.; Zou, B. K.; Cheng, Q.; Huang, Y. P.; Wu, F.; Xu, G. W.; Chen, C. H. Flexible and free-standing LiFePO4/TPU/SP cathode membrane prepared via phase separation process for lithium ion batteries. J. Membr. Sci. 2017, 541, 633–640.

    CAS  Google Scholar 

  126. Zhao, Q. S.; Liu, J. L.; Li, X. X.; Xia, Z. Z.; Zhang, Q. X.; Zhou, M.; Tian, W.; Wang, M.; Hu, H.; Li, Z. T. et al. Graphene oxide-induced synthesis of button-shaped amorphous Fe2O3/rGO/CNFs films as flexible anode for high-performance lithium-ion batteries. Chem. Eng. J. 2019, 369, 215–222.

    CAS  Google Scholar 

  127. Ren, J.; Ren, R. P.; Lv, Y. K. A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chem. Eng. J. 2018, 353, 419–424.

    CAS  Google Scholar 

  128. Zhao, F. Y.; Zhao, X.; Peng, B.; Gan, F.; Yao, M. Y.; Tan, W. J.; Dong, J.; Zhang, Q. H. Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium ion batteries. Chin. Chem. Lett. 2018, 29, 1692–1697.

    CAS  Google Scholar 

  129. Huang, X. Y.; Cai, X.; Xu, D. H.; Chen, W. Y.; Wang, S. J.; Zhou, W. Y.; Meng, Y. Z.; Fang, Y. P.; Yu, X. Y. Hierarchical Fe2O3@CNF fabric decorated with MoS2 nanosheets as a robust anode for flexible lithium-ion batteries exhibiting ultrahigh areal capacity. J. Mater. Chem. A 2018, 6, 16890–16899.

    CAS  Google Scholar 

  130. Min, X.; Sun, B.; Chen, S.; Fang, M. H.; Wu, X. W.; Liu, Y. G.; Abdelkader, A.; Huang, Z. H.; Liu, T.; Xi, K. et al. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 2019, 16, 597–606.

    Google Scholar 

  131. Zheng, S. H.; Wu, Z. S.; Zhou, F.; Wang, X.; Ma, J. M.; Liu, C.; He, Y. B.; Bao, X. H. All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 2018, 51, 613–620.

    CAS  Google Scholar 

  132. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithiumion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    CAS  Google Scholar 

  133. Li, Z.; Ding, J.; Mitlin, D. Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance. Acc. Chem. Res. 2015, 48, 1657–1665.

    CAS  Google Scholar 

  134. Wang, H. G.; Li, W.; Liu, D. P.; Feng, X. L.; Wang, J.; Yang, X. Y.; Zhang, X. B.; Zhu, Y. J.; Zhang, Y. Flexible electrodes for sodium-ion batteries: Recent progress and perspectives. Adv. Mater. 2017, 29, 1703012.

    Google Scholar 

  135. Bian, H. D.; Xiao, X. F.; Zeng, S. S.; Yuen, M. F.; Li, Z. B.; Kang, W. P.; Yu, D. Y. W.; Xu, Z. T.; Lu, J.; Li, Y. Y. Mesoporous C-coated SnOx nanosheets on copper foil as flexible and binder-free anodes for superior sodium-ion batteries. J. Mater. Chem. A 2017, 5, 2243–2250.

    CAS  Google Scholar 

  136. Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

    CAS  Google Scholar 

  137. Fu, S. D.; Ni, J. F.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016, 16, 4544–4551.

    CAS  Google Scholar 

  138. Yang, T. Z.; Qian, T.; Wang, M. F.; Shen, X. W.; Xu, N.; Sun, Z. Z.; Yan, C. L. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 2016, 28, 539–545.

    CAS  Google Scholar 

  139. Li, H. S.; Ding, Y.; Ha, H.; Shi, Y.; Peng, L. L.; Zhang, X. G.; Ellison, C. J.; Yu, G. H. An all-stretchable-component sodium-ion full battery. Adv. Mater. 2017, 29, 1700898.

    Google Scholar 

  140. Guo, J. Z.; Gu, Z. Y.; Zhao, X. X.; Wang, M. Y.; Yang, X.; Yang, Y.; Li, W. H.; Wu, X. L. Flexible Na/K-ion full batteries from the renewable cotton cloth-derived stable, low-cost, and binder-free anode and cathode. Adv. Energy Mater. 2019, 9, 1902056.

    CAS  Google Scholar 

  141. Zhou, C. S.; Fan, S. X.; Hu, M. X.; Lu, J. M.; Li, J.; Huang, Z. H.; Kang, F. Y.; Lv, R. T. High areal specific capacity of Ni3V2O8/carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 15517–15524.

    CAS  Google Scholar 

  142. Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 2017, 27, 1702116.

    Google Scholar 

  143. Sun, N.; Guan, Y. B.; Liu, Y. T.; Zhu, Q. Z.; Shen, J. R.; Liu, H.; Zhou, S. Q.; Xu, B. Facile synthesis of free-standing, flexible hard carbon anode for high-performance sodium ion batteries using graphene as a multi-functional binder. Carbon 2018, 137, 475–483.

    CAS  Google Scholar 

  144. Kretschmer, K.; Sun, B.; Zhang, J. Q.; Xie, X. Q.; Liu, H.; Wang, G. X. 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@carbon paper cathode for sodium-ion batteries. Small 2017, 13, 1603318.

    Google Scholar 

  145. Ma, X. X.; Chen, L.; Ren, X. H.; Hou, G. M.; Chen, L. N.; Zhang, L.; Liu, B. B.; Ai, Q.; Zhang, L.; Si, P. C. et al. High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries. J. Mater. Chem. A 2018, 6, 1574–1581.

    CAS  Google Scholar 

  146. Huang, Y.; Fang, C.; Zeng, R.; Liu, Y. J.; Zhang, W.; Wang, Y. J.; Liu, Q. J.; Huang, Y. H. In situ-formed hierarchical metal-organic flexible cathode for high-energy sodium-ion batteries. ChemSusChem 2017, 10, 4704–4708.

    CAS  Google Scholar 

  147. Ren, X. L.; Turcheniuk, K.; Lewis, D.; Fu, W. B.; Magasinski, A.; Schauer, M. W.; Yushin, G. Iron phosphate coated flexible carbon nanotube fabric as a multifunctional cathode for Na-ion batteries. Small 2018, 14, 1703425.

    Google Scholar 

  148. Chen, Q.; Sun, S.; Zhai, T.; Yang, M.; Zhao, X. Y.; Xia, H. Yolkshell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery. Adv. Energy Mater. 2018, 8, 1800054.

    Google Scholar 

  149. Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615–1621.

    CAS  Google Scholar 

  150. Wang, X. W.; Guo, H. P.; Liang, J.; Zhang, J. F.; Zhang, B.; Wang, J. Z.; Luo, W. B.; Liu, H. K.; Dou, S. X. An integrated freestanding flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1801016.

    Google Scholar 

  151. Wang, Y. W.; Xiao, N.; Wang, Z. Y.; Tang, Y. C.; Li, H. Q.; Yu, M. L.; Liu, C.; Zhou, Y.; Qiu, J. S. Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries. Carbon 2018, 135, 187–194.

    CAS  Google Scholar 

  152. Choe, J. H.; Kim, N. R.; Lee, M. E.; Yoon, H. J.; Song, M. Y.; Jin, H. J.; Yun, Y. S. Flexible graphene stacks for sodium-ion storage. ChemElectroChem 2017, 4, 716–720.

    CAS  Google Scholar 

  153. Deng, X.; Xie, K. Y.; Li, L.; Zhou, W.; Sunarso, J.; Shao, Z. P. Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries. Carbon 2016, 107, 67–73.

    CAS  Google Scholar 

  154. An, H. R.; Li, Y.; Gao, Y.; Cao, C.; Han, J. K.; Feng, Y. Y.; Feng, W. Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries. Carbon 2017, 116, 338–346.

    CAS  Google Scholar 

  155. Wang, S. Q.; Xia, L.; Yu, L.; Zhang, L.; Wang, H. H.; Lou, X. W. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 2016, 6, 1502217.

    Google Scholar 

  156. Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L. M.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu, C. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 2018, 14, 1702864.

    Google Scholar 

  157. Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 2014, 13, 69–73.

    CAS  Google Scholar 

  158. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    CAS  Google Scholar 

  159. Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Yan, M.; Liang, J. Y.; Yang, Y. G.; Kong, Q. H. et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Res. 2020, 13, 430–436.

    CAS  Google Scholar 

  160. Zhang, X. L.; Zhao, S. Y.; Fan, W.; Wang, J. N.; Li, C. J. Long cycling, thermal stable, dendrites free gel polymer electrolyte for flexible lithium metal batteries. Electrochim. Acta 2019, 301, 304–311.

    CAS  Google Scholar 

  161. Li, D.; Chen, L.; Wang, T. S.; Fan, L. Z. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 7069–7078.

    CAS  Google Scholar 

  162. Zhou, B. H.; Zuo, C.; Xiao, Z. L.; Zhou, X. P.; He, D.; Xie, X. L.; Xue, Z. G. Self-healing polymer electrolytes formed via dualnetworks: A new strategy for flexible lithium metal batteries. Chem. -Eur. J. 2018, 24, 19200–19207.

    CAS  Google Scholar 

  163. Zhu, Y. H.; Cao, J.; Chen, H.; Yu, Q. P.; Li, B. H. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 2019, 7, 6832–6839.

    CAS  Google Scholar 

  164. Zhao, Y.; Zhang, Y.; Sun, H.; Dong, X. L.; Cao, J. Y.; Wang, L.; Xu, Y. F.; Ren, J.; Hwang, Y.; Son, I. H. et al. A self-healing aqueous lithium-ion battery. Angew. Chem., Int. Ed. 2016, 55, 14384–14388.

    CAS  Google Scholar 

  165. Nam, Y. J.; Cho, S. J.; Oh, D. Y.; Lim, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for freestanding and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett. 2015, 15, 3317–3323.

    CAS  Google Scholar 

  166. Li, C. M.; Zhang, H.; Otaegui, L.; Singh, G.; Armand, M.; Rodriguez-Martinez, L. M. Estimation of energy density of Li-S batteries with liquid and solid electrolytes. J. Power Sources 2016, 326, 1–5.

    CAS  Google Scholar 

  167. Zheng, D.; Zhang, X. R.; Wang, J. K.; Qu, D. Y.; Yang, X. Q.; Qu, D. Y. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide. J. Power Sources 2016, 301, 312–316.

    CAS  Google Scholar 

  168. Helen, M.; Reddy, M. A.; Diemant, T.; Golla-Schindler, U.; Behm, R. J.; Kaiser, U.; Fichtner, M. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries. Sci. Rep. 2015, 5, 12146.

    CAS  Google Scholar 

  169. Choi, S.; Yoon, I.; Nichols, W. T.; Shin, D. Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solidstate lithium-sulfur battery using Li2S-P2S5 solid electrolyte. Ceram. Int. 2018, 44, 7450–7453.

    CAS  Google Scholar 

  170. Jamesh, M. I. Recent advances on flexible electrodes for Na-ion batteries and Li-S batteries. J. Energy Chem. 2019, 32, 15–44.

    Google Scholar 

  171. Liu, R. Q.; Liu, Y. J.; Chen, J.; Kang, Q.; Wang, L. L.; Zhou, W. X.; Huang, Z. D.; Lin, X. J.; Li, Y.; Li, P. et al. Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action. Nano Energy 2017, 33, 325–333.

    CAS  Google Scholar 

  172. Wahyudi, W.; Cao, Z.; Kumar, P.; Li, M. L.; Wu, Y. Q.; Hedhili, M. N.; Anthopoulos, T. D.; Cavallo, L.; Li, L. J.; Ming, J. Phase inversion strategy to flexible freestanding electrode: Critical coupling of binders and electrolytes for high performance Li-S battery. Adv. Funct. Mater. 2018, 28, 1802244.

    Google Scholar 

  173. Wei, H.; Ma, J.; Li, B.; Zuo, Y. X.; Xia, D. G. Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer. ACS Appl. Mater. Interfaces 2014, 6, 20276–20281.

    CAS  Google Scholar 

  174. Ming, J.; Li, M. L.; Kumar, P.; Lu, A. Y.; Wahyudi, W.; Li, L. J. Redox species-based electrolytes for advanced rechargeable lithium ion batteries. ACS Energy Lett. 2016, 1, 529–534.

    CAS  Google Scholar 

  175. Agostini, M.; Scrosati, B.; Hassoun, J. An advanced lithium-ion sulfur battery for high energy storage. Adv. Energy Mater. 2015, 5, 1500481.

    Google Scholar 

  176. Xiao, P. T.; Bu, F. X.; Yang, G. H.; Zhang, Y.; Xu, Y. X. Integration of graphene, Nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv. Mater. 2017, 29, 1703324.

    Google Scholar 

  177. Chong, W. G.; Huang, J. Q.; Xu, Z. L.; Qin, X. Y.; Wang, X. Y.; Kim, J. K. Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv. Funct. Mater. 2017, 27, 1604815.

    Google Scholar 

  178. Xiang, M. W.; Wu, H.; Liu, H.; Huang, J.; Zheng, Y. F.; Yang, L.; Jing, P.; Zhang, Y.; Dou, S. X.; Liu, H. K. A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702573.

    Google Scholar 

  179. Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641–647.

    CAS  Google Scholar 

  180. Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

    CAS  Google Scholar 

  181. Tao, Y. Q.; Wei, Y. J.; Liu, Y.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery. Energy Environ. Sci. 2016, 9, 3230–3239.

    CAS  Google Scholar 

  182. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

    Google Scholar 

  183. Sun, Q.; Fang, X.; Weng, W.; Deng, J.; Chen, P. N.; Ren, J.; Guan, G. Z.; Wang, M.; Peng, H. S. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 10539–10544.

    CAS  Google Scholar 

  184. Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 2014, 26, 625–631.

    CAS  Google Scholar 

  185. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

    CAS  Google Scholar 

  186. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Google Scholar 

  187. Wu, C.; Fu, L. J.; Maier, J.; Yu, Y. Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible Li-sulfur batteries. J. Mater. Chem. A 2015, 3, 9438–9445.

    CAS  Google Scholar 

  188. Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygenreduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

    CAS  Google Scholar 

  189. Xiang, F. W.; Chen, X. H.; Yu, J.; Ma, W. H.; Li, Y. P.; Yang, N. Synthesis of three-dimensionally ordered porous perovskite type LaMnO3 for Al-air battery. J. Mater. Sci. Technol. 2018, 34, 1532–1537.

    CAS  Google Scholar 

  190. Tan, P.; Chen, B.; Xu, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Flexible Zn-and Li-air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.

    CAS  Google Scholar 

  191. Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Luo, D.; Liu, G. H.; Li, J. D.; Zhang, Z.; Hu, Y. F.; Chen, Z. W. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911.

    Google Scholar 

  192. Yoon, K. R.; Shin, K.; Park, J.; Cho, S. H.; Kim, C.; Jung, J. W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I. D. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li-O2 batteries. ACS Nano 2018, 12, 128–139.

    CAS  Google Scholar 

  193. Ji, D. X.; Peng, S. J.; Safanama, D.; Yu, H. N.; Li, L. L.; Yang, G. R.; Qin, X. H.; Srinivasan, M.; Adams, S.; Ramakrishna, S. Design of 3-dimensional hierarchical architectures of carbon and highly active transition metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithium-air batteries. Chem. Mater. 2017, 29, 1665–1675.

    CAS  Google Scholar 

  194. Xue, H. R.; Wu, S. C.; Tang, J.; Gong, H.; He, P.; He, J. P.; Zhou, H. S. Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 8427–8435.

    CAS  Google Scholar 

  195. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    CAS  Google Scholar 

  196. Geng, D. S.; Ding, N.; Hor, T. S. A.; Liu, Z. L.; Sun, X. L.; Zong, Y. Potential of metal-free “graphene alloy” as electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 1795–1810.

    CAS  Google Scholar 

  197. Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metalfree catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

    CAS  Google Scholar 

  198. Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem., Int. Ed. 2014, 53, 1404–1409.

    CAS  Google Scholar 

  199. Hu, Y. X.; Wei, J.; Liang, Y.; Zhang, H. C.; Zhang, X. W.; Shen, W.; Wang, H. T. Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes. Angew. Chem., Int. Ed. 2016, 55, 2048–2052.

    CAS  Google Scholar 

  200. Jiang, Y. X.; Cheng, J. F.; Zou, L.; Li, X. Y.; Huang, Y. Z.; Jia, L. C.; Chi, B.; Pu, J.; Li, J. Graphene foam decorated with ceria microspheres as a flexible cathode for foldable lithium-air batteries. ChemCatChem 2017, 9, 4231–4237.

    CAS  Google Scholar 

  201. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    CAS  Google Scholar 

  202. Liu, Q.; Wang, Y. B.; Dai, L. M.; Yao, J. N. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 2016, 28, 3000–3006.

    CAS  Google Scholar 

  203. Kordek, K.; Jiang, L. X.; Fan, K. C.; Zhu, Z. J.; Xu, L.; Al-Mamun, M.; Dou, Y. H.; Chen, S.; Liu, P. R.; Yin, H. J. et al. Two-step activated carbon cloth with oxygen-rich functional groups as a highperformance additive-free air electrode for flexible zinc-air batteries. Adv. Energy Mater. 2019, 9, 1802936.

    Google Scholar 

  204. Fu, K. K.; Cheng, J.; Li, T.; Hu, L. B. Flexible batteries: From mechanics to devices. ACS Energy Lett. 2016, 1, 1065–1079.

    CAS  Google Scholar 

  205. Mo, F. N.; Liang, G. J.; Huang, Z. D.; Li, H. F.; Wang, D. H.; Zhi, C. Y. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 2020, 32, 1902151.

    CAS  Google Scholar 

  206. Zhou, Y.; Wang, C. H.; Lu, W.; Dai, L. M. Recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv. Mater. 2020, 32, 1902779.

    CAS  Google Scholar 

  207. Weng, W.; Sun, Q.; Zhang, Y.; Lin, H. J.; Ren, J.; Lu, X.; Wang, M.; Peng, H. S. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 2014, 14, 3432–3438.

    CAS  Google Scholar 

  208. Zhu, Y. H.; Yuan, S.; Bao, D.; Yin, Y. B.; Zhong, H. X.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv. Mater. 2017, 29, 1603719.

    Google Scholar 

  209. Park, J.; Park, M.; Nam, G.; Lee, J. S.; Cho, J. All-solid-state cable-type flexible zinc-air battery. Adv. Mater. 2015, 27, 1396–1401.

    CAS  Google Scholar 

  210. Xu, Y. F.; Zhang, Y.; Guo, Z. Y.; Ren, J.; Wang, Y. G.; Peng, H. S. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem., Int. Ed. 2015, 54, 15390–15394.

    CAS  Google Scholar 

  211. Lin, H. J.; Weng, W.; Ren, J.; Qiu, L. B.; Zhang, Z. T.; Chen, P. N.; Chen, X. L.; Deng, J.; Wang, Y. G.; Peng, H. S. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 2014, 26, 1217–1222.

    CAS  Google Scholar 

  212. Wang, K.; Zhang, X. H.; Han, J. W.; Zhang, X.; Sun, X. Z.; Li, C.; Liu, W. H.; Li, Q. W.; Ma, Y. W. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 2018, 10, 24573–24582.

    CAS  Google Scholar 

  213. Song, C. H.; Li, Y. P.; Li, H.; He, T.; Guan, Q.; Yang, J.; Li, X. L.; Cheng, J. L.; Wang, B. A novel flexible fiber-shaped dual-ion battery with high energy density based on omnidirectional porous Al wire anode. Nano Energy 2019, 60, 285–293.

    CAS  Google Scholar 

  214. Xiao, X.; Li, T. Q.; Yang, P. H.; Gao, Y.; Jin, H. Y.; Ni, W. J.; Zhan, W. H.; Zhang, X. H.; Cao, Y. Z.; Zhong, J. W. et al. Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 2012, 6, 9200–9206.

    CAS  Google Scholar 

  215. Yadav, A.; De, B.; Singh, S. K.; Sinha, P.; Kar, K. K. Facile development strategy of a single carbon-fiber-based all-solid-state flexible lithium-ion battery for wearable electronics. ACS Appl. Mater. Interfaces 2019, 11, 7974–7980.

    CAS  Google Scholar 

  216. Guan, C.; Sumboja, A.; Zang, W. J.; Qian, Y. H.; Zhang, H.; Liu, X. M.; Liu, Z. L.; Zhao, D.; Pennycook, S. J.; Wang, J. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Mater. 2019, 16, 243–250.

    Google Scholar 

  217. Liu, T.; Liu, Q. C.; Xu, J. J.; Zhang, X. B. Cable-type water-survivable flexible Li-O2 battery. Small 2016, 12, 3101–3105.

    CAS  Google Scholar 

  218. Hu, L. B.; Wu, H.; La Mantia, F.; Yang, Y.; Cui, Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010, 4, 5843–5848.

    CAS  Google Scholar 

  219. Kammoun, M.; Berg, S.; Ardebili, H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale 2015, 7, 17516–17522.

    CAS  Google Scholar 

  220. Guo, Z. Y.; Li, J. L.; Xia, Y.; Chen, C.; Wang, F. M.; Tamirat, A. G.; Wang, Y. G.; Xia, Y. Y.; Wang, L.; Feng, S. H. A flexible polymer-based Li-air battery using a reduced graphene oxide/Li composite anode. J. Mater. Chem. A 2018, 6, 6022–6032.

    CAS  Google Scholar 

  221. Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F. et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

    CAS  Google Scholar 

  222. Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981.

    CAS  Google Scholar 

  223. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    CAS  Google Scholar 

  224. Yang, Y.; Jeong, S.; Hu, L. B.; Wu, H.; Lee, S. W.; Cui, Y. Transparent lithium-ion batteries. Proc. Natl. Acad. Sci. USA 2011, 108, 13013–13018.

    CAS  Google Scholar 

  225. Wagner, S.; Lacour, S. P.; Jones, J.; Hsu, P. H. I.; Sturm, J. C.; Li, T.; Suo, Z. G. Electronic skin: Architecture and components. Phys. E Low Dimens. Syst. Nanostruct. 2004, 25, 326–334.

    Google Scholar 

  226. Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

    Google Scholar 

  227. Yu, Y.; Luo, Y. F.; Wu, H. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Li, J.; Wang, J. P. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale 2018, 10, 19972–19978.

    CAS  Google Scholar 

  228. Kim, J. S.; Ko, D.; Yoo, D. J.; Jung, D. S.; Yavuz, C. T.; Kim, N. I.; Choi, I. S.; Song, J. Y.; Choi, J. W. A half millimeter thick coplanar flexible battery with wireless recharging capability. Nano Lett. 2015, 15, 2350–2357.

    CAS  Google Scholar 

  229. Li, T.; Suo, Z. G.; Lacour, S. P.; Wagner, S. Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 2005, 20, 3274–3277.

    CAS  Google Scholar 

  230. Song, Z. M.; Ma, T.; Tang, R.; Cheng, Q.; Wang, X.; Krishnaraju, D.; Panat, R.; Chan, C. K.; Yu, H. Y.; Jiang, H. Q. Origami lithiumion batteries. Nat. Commun. 2014, 5, 3140.

    Google Scholar 

  231. Song, Z. M.; Wang, X.; Lv, C.; An, Y. H.; Liang, M. B.; Ma, T.; He, D.; Zheng, Y. J.; Huang, S. Q.; Yu, H. Y. et al. Kirigami-based stretchable lithium-ion batteries. Sci. Rep. 2015, 5, 10988.

    CAS  Google Scholar 

  232. Gray, D. S.; Tien, J.; Chen, C. S. High-conductivity elastomeric electronics. Adv. Mater. 2004, 16, 393–397.

    CAS  Google Scholar 

  233. Liu, Y.; Gorgutsa, S.; Santato, C.; Skorobogatiy, M. Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J. Electrochem. Soc. 2012, 159, A349–A356.

    CAS  Google Scholar 

  234. Zhang, Y.; Wang, Y. H.; Wang, L.; Lo, C. M.; Zhao, Y.; Jiao, Y. D.; Zheng, G. F.; Peng, H. S. A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A 2016, 4, 9002–9008.

    CAS  Google Scholar 

  235. Fang, X.; Weng, W.; Ren, J.; Peng, H. S. A cable-shaped lithium sulfur battery. Adv. Mater. 2016, 28, 491–496.

    CAS  Google Scholar 

  236. Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as highperformance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 2018, 30, 1703657.

    Google Scholar 

  237. Lee, J. M.; Choi, C.; Kim, J. H.; De Andrade, M. J.; Baughman, R. H.; Kim, S. J. Biscrolled carbon nanotube yarn structured silver-zinc battery. Sci. Rep. 2018, 8, 11150.

    Google Scholar 

  238. Ren, J.; Zhang, Y.; Bai, W. Y.; Chen, X. L.; Zhang, Z. T.; Fang, X.; Weng, W.; Wang, Y. G.; Peng, H. S. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 7864–7869.

    CAS  Google Scholar 

  239. Zhang, Y.; Jiao, Y. D.; Lu, L. J.; Wang, L.; Chen, T. Q.; Peng, H. S. An ultraflexible silicon-oxygen battery fiber with high energy density. Angew. Chem., Int. Ed. 2017, 56, 13741–13746.

    CAS  Google Scholar 

  240. Park, M.; Cha, H.; Lee, Y.; Hong, J.; Kim, S. Y.; Cho, J. Postpatterned electrodes for flexible node-type lithium-ion batteries. Adv. Mater. 2017, 29, 1605773.

    Google Scholar 

  241. Tajima, R.; Miwa, T.; Oguni, T.; Hitotsuyanagi, A.; Miyake, H.; Katagiri, H.; Goto, Y.; Saito, Y.; Goto, J.; Kaneyasu, M. et al. Truly wearable display comprised of a flexible battery, flexible display panel, and flexible printed circuit. J. Soc. Inf. Disp. 2014, 22, 237–244.

    CAS  Google Scholar 

  242. Kim, J. S.; Lee, Y. H.; Lee, I.; Kim, T. S.; Ryou, M. H.; Choi, J. W. Large area multi-stacked lithium-ion batteries for flexible and rollable applications. J. Mater. Chem. A 2014, 2, 10862–10868.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank our colleagues for their contributions to the work cited. We are also grateful for financial support from The Special Significant Science and Technology Program of Yunnan Province (No. 2016HE001-2016HE002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Lu or Liming Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, F., Cheng, F., Sun, Y. et al. Recent advances in flexible batteries: From materials to applications. Nano Res. 16, 4821–4854 (2023). https://doi.org/10.1007/s12274-021-3820-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3820-2

Keywords

Navigation