Skip to main content
Log in

Wafer-scale quasi-layered tungstate-doped polypyrrole film with high volumetric capacitance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Layered materials are particularly attractive for supercapacitors because of their unique physical, electrical and chemical properties. Here, we demonstrate a facile and scalable electrochemical deposition method for wafer-scale synthesis of quasi-layered tungstate-doped polypyrrole films (named TALPy) with controllable thickness and size. The as-prepared TALPy film exhibits a high gravimetric density and excellent volumetric capacitance, exceeding many high-performing carbon- and polymer-based film electrodes. Based on combined results of ex-situ X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS), it is determined that TALPy stores charge through an ion intercalation process accompanied by change in oxidation states of polypyrrole backbone, which is referred as intercalation pseudocapacitance. All these results suggest the great promise of electrochemical deposition as a scalable and controllable bottom-up approach for synthesizing quasi-layered conductive organic-inorganic hybrid films for electrochemical energy storage applications with high volumetric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

    CAS  Google Scholar 

  2. Jiang, Y.; Fletcher, J.; Burr, P.; Hall, C.; Zheng, B. W.; Wang, D. W.; Ouyang, Z.; Lennon, A. Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power. J. Power Sources 2018, 384, 396–407.

    CAS  Google Scholar 

  3. Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

    CAS  Google Scholar 

  4. Bryan, A. M.; Santino, L. M.; Lu, Y.; Acharya, S.; D’Arcy, J. M. Conducting polymers for pseudocapacitive energy storage. Chem. Mater. 2016, 28, 5989–5998.

    CAS  Google Scholar 

  5. Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y.; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854.

    CAS  Google Scholar 

  6. Wang, K. B.; Xun, Q.; Zhang, Q. C. Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem 2020, 2, 100025.

    CAS  Google Scholar 

  7. Wang, K. B.; Li, Q. Q.; Ren, Z. J.; Li, C.; Chu, Y.; Wang, Z. K.; Zhang, M. D.; Wu, H.; Zhang, Q. C. 2D Metal-organic frameworks (MOFs) for high-performance BatCap hybrid devices. Smal 2020, 46, 2001987.

    Google Scholar 

  8. Wang, K. B.; Bi, R.; Huang, M. L.; Lv, B.; Wang, H. J.; Li, C.; Wu, H.; Zhang, Q. C. Porous cobalt metal-organic frameworks as active elements in battery-supercapacitor hybrid devices. Inorg. Chem. 2020, 59, 6808–6814.

    CAS  Google Scholar 

  9. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Google Scholar 

  10. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 44, 271–279.

    Google Scholar 

  11. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    CAS  Google Scholar 

  12. Augustyn, V.; Gogotsi, Y. 2D materials with nanoconfined fluids for electrochemical energy storage. Joule. 2017, 1, 443–452.

    CAS  Google Scholar 

  13. Yu, X.; Yun, S.; Yeon, J. S.; Bhattacharya, P.; Wang, L. B.; Lee, S. W.; Hu, X. L.; Park, H. S. Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 2018, 8, 1702930.

    Google Scholar 

  14. Da, Y. M.; Liu, J. X.; Zhou, L.; Zhu, X. H.; Chen, X. D.; Fu, L. Engineering 2D architectures toward high-performance micro-supercapacitors. Adv. Mater. 2019, 34, 1802793.

    Google Scholar 

  15. Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.

    CAS  Google Scholar 

  16. Mendoza-Sánchez, B.; Gogotsi, Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 2016, 28, 6104–6135.

    Google Scholar 

  17. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    CAS  Google Scholar 

  18. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.

    Google Scholar 

  19. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101–105.

    CAS  Google Scholar 

  20. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    CAS  Google Scholar 

  21. Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 40, 313–318.

    Google Scholar 

  22. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    CAS  Google Scholar 

  23. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    CAS  Google Scholar 

  24. Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78–81.

    CAS  Google Scholar 

  25. Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

    CAS  Google Scholar 

  26. Kang, J. L.; Huang, S. H.; Jiang, K. Y.; Lu, C. B.; Chen, Z. Y.; Zhu, J. H.; Yang, C. Q.; Ciesielski, A.; Qiu, F.; Zhuang, X. D. 2D porous polymers with sp2-carbon connections and sole sp2-carbon skeletons. Adv. Funct. Mater. 2020, 30, 2000857.

    CAS  Google Scholar 

  27. Jiang, K. Y.; Baburin, I. A.; Han, P.; Yang, C. Q.; Fu, X. B.; Yao, Y. F.; Li, J. T.; Cánovas, E.; Seifert, G.; Chen, J. S. et al. Interfacial approach toward benzene-bridged polypyrrole film-based micro-supercapacitors with ultrahigh volumetric power density. Adv. Funct. Mater. 2020, 30, 1908243.

    CAS  Google Scholar 

  28. Chen, Z. Y.; Chen, Y. H.; Zhao, Y. Z.; Qiu, F.; Jiang, K. Y.; Huang, S. H.; Ke, C. C.; Zhu, J. H.; Tranca, D.; Zhuang, X. D. B/N-enriched semi-conductive polymer film for micro-supercapacitors with AC line-filtering performance. Langmuir 2021, 37, 2523–2531.

    CAS  Google Scholar 

  29. Yu, T. L.; Wang, Y. F.; Jiang, K. Y.; Zhai, G. Q.; Ke, C. C.; Zhang, J. C.; Li, J. T.; Tranca, D.; Kymakis, E.; Zhuang, X. D. Catechol-coordinated framework film-based micro-supercapacitors with AC line filtering performance. Chem.—Eur. J. 2021, 27, 6340–6347.

    CAS  Google Scholar 

  30. Xiao, K. F.; Jiang, D. L.; Amal, R.; Wang, D. W. A 2D conductive organic-inorganic hybrid with extraordinary volumetric capacitance at minimal swelling. Adv. Mater. 2018, 30, 1800400.

    Google Scholar 

  31. Xiao, K. F.; Pan, J.; Liang, K.; Su, H. J.; Jiang, D. L.; Amal, R.; Wang, D. W. Layered conductive polymer-inorganic anion network for high-performance ultra-loading capacitive electrodes. Energy Stor. Mater. 2018, 14, 90–99.

    Google Scholar 

  32. Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

    CAS  Google Scholar 

  33. Şimşek, B.; Ceran, Ö. B.; Şara, O. N. Difficulties in thin film synthesis. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O. V.; Torres-Martínez, L. M.; Kharisov, B. I., Eds.; Springer: Cham, 2020; pp 1–23.

    Google Scholar 

  34. Yu, M. H.; Feng, X. L. Thin-film electrode-based supercapacitors. Joule 2019, 3, 338–360.

    CAS  Google Scholar 

  35. Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

    CAS  Google Scholar 

  36. Li, H.; Qi, C. S.; Tao, Y.; Liu, H. B.; Wang, D. W.; Li, F.; Yang, Q. H.; Cheng, H. M. Quantifying the volumetric performance metrics of supercapacitors. Adv. Energy Mater. 2019, 9, 1900079.

    Google Scholar 

  37. Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquidmediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537.

    CAS  Google Scholar 

  38. Wang, Z. H.; Tammela, P.; Stramme, M.; Nyholm, L. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 2015, 7, 3418–3423.

    CAS  Google Scholar 

  39. Wang, Z. H.; Carlsson, D. O.; Tammela, P.; Hua, K.; Zhang, P.; Nyholm, L.; Stramme, M. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 2015, 9, 7563–7571.

    CAS  Google Scholar 

  40. Wang, D. W.; Li, F.; Zhao, J. P.; Ren, W. C.; Chen, Z. G.; Tan, J.; Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752.

    CAS  Google Scholar 

  41. Lin, D.; Tang, Z. H.; Pan, Q. J.; Zhang, S. P.; Huo, D. X.; Yan, S. S.; Han, F. M. Dense reduced graphene oxide films obtained by pressing create stable and compact capacitive energy storage. ChemElectroChem 2020, 7, 1987–1991.

    CAS  Google Scholar 

  42. Jiang, L. L.; Sheng, L. Z.; Long, C. L.; Fan, Z. J. Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 2015, 11, 471–480.

    CAS  Google Scholar 

  43. Wamser, C. A. Hydrolysis of fluoboric acid in aqueous solution. J. Am. Chem. Soc. 1948, 70, 1209–1215.

    CAS  Google Scholar 

  44. Mesmer, R. E.; Palen, K. M.; Baes, Jr. C. F. Fluoroborate equilibriums in aqueous solutions. Inorg. Chem. 1973, 12, 89–95.

    CAS  Google Scholar 

  45. Mathis, T. S.; Kurra, N.; Wang, X. H.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective—Guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007.

    CAS  Google Scholar 

  46. Shao, J. J.; Raidongia, K.; Koltonow, A. R.; Huang, J. X. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 2015, 6, 7602.

    Google Scholar 

  47. Raidongia, K.; Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2012, 134, 16528–16531.

    CAS  Google Scholar 

  48. Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

    CAS  Google Scholar 

  49. Wang, J.; Xu, Y. L.; Yan, F.; Zhu, J. B.; Wang, J. P. Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life. J. Power Sources 2011, 196, 2373–2379.

    CAS  Google Scholar 

  50. Varade, V.; Honnavar, G. V.; Anjaneyulu, P.; Ramesh, K. P.; Menon, R. Probing disorder and transport properties in polypyrrole thin-film devices by impedance and Raman spectroscopy. J. Phys. D: Appl. Phys. 2013, 46, 365306.

    Google Scholar 

  51. Duchet, J.; Legras, R.; Demoustier-Champagne, S. Chemical synthesis of polypyrrole: Structure-properties relationship. Synth. Met. 1998, 98, 113–122.

    CAS  Google Scholar 

  52. Šetka, M.; Calavia, R.; Vojkůvka, L.; Llobet, E.; Drbohlavová, J.; Vallejos, S. Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Sci. Rep. 2019, 9, 8465.

    Google Scholar 

  53. Ge, H. L.; Qi, G. J.; Kang, E. T.; Neoh, K. G. Study of overoxidized polypyrrole using X-ray photoelectron spectroscopy. Polymer 1994, 35, 504–508.

    CAS  Google Scholar 

  54. Malitesta, C.; Losito, I.; Sabbatini, L.; Zambonin, P. G. New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling. J. Electron Spectrosc. Relat. Phenom 1995, 76, 629–634.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australian Research Council Discovery Project (No. DP190101008), Future Fellowship (No. FT190100058), and the UNSW Scientia Program. H. B. L. acknowledges the University International Postgraduate Award (UIPA) PhD Scholarship from UNSW Sydney. The authors thank UNSW Mark Wainwright Analytical Centre for their facilities and the scientific and technical supports. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA, under contract 89233218CNA000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wei Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liang, J., Watt, J. et al. Wafer-scale quasi-layered tungstate-doped polypyrrole film with high volumetric capacitance. Nano Res. 16, 4895–4900 (2023). https://doi.org/10.1007/s12274-021-3783-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3783-3

Keywords

Navigation