Skip to main content
Log in

Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Formic acid oxidation (FAO) is a typical anode reaction in fuel cells that can be facilitated by modulating its direct and indirect reaction pathways. Herein, PtAu bimetallic nanoparticles loaded onto Co and N co-doping carbon nanoframes (CoNC NFs) were designed to improve the selectivity of the direct reaction pathway for efficient FAO. Based on these subtle nanomaterials, the influences of elemental composition and carbon-support materials on the two pathways of FAO were investigated in detail. The results of fuel cell tests verified that the appropriate amount of Au in PtAu/CoNC can promote a direct reaction pathway for FAO, which is crucial for enhancing the oxidation efficiency of formic acid. In particular, the obtained PtAu/CoNC with an optimal Pt/Au atomic ratio of 1:1 (PtAu/CoNC-3) manifests the best catalytic performance among the analogous obtained Pt-based electrocatalysts. The FAO mass activity of the PtAu/CoNC-3 sample reached \(0.88\;\text{A}\cdot{\text{mg}}_{\text{Pt}}{^{-1}}\), which is 26.0 times higher than that of Pt/C. The results of first-principles calculation and CO stripping jointly demonstrate that the CO adsorption of PtAu/CoNC is considerably lower than that of Pt/CoNC and PtAu/C, which indicates that the synergistic effect of Pt, Au, and CoNC NFs is critical for the resistance of Pt to CO poisoning. This work is of great significance for a deeper understanding of the oxidation mechanism of formic acid and provides a feasible and promising strategy for enhancing the catalytic performance of the catalyst by improving the direct reaction pathway for FAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, W.; Wang, D. D.; Zhang, Y. Q.; Tao, L.; Wang, T. H.; Zou, Y. Q.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 2020, 32, 1907879.

    Article  CAS  Google Scholar 

  2. Rejal, S. Z.; Masdar, M. S.; Kamarudin, S. K. A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover. Int. J. Hydrogen Energy 2014, 39, 10267–10274.

    Article  CAS  Google Scholar 

  3. Jiang, X.; Xiong, Y. X.; Wang, Y. F.; Wang, J. X.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M.; Tang, Y. W. Treelike two-level PdxAgy nanocrystals tailored for bifunctional fuel cell electrocatalysis. J. Mater. Chem. A 2019, 7, 5248–5257.

    Article  CAS  Google Scholar 

  4. Li, F. H.; Guo, Y. Q.; Liu, Y.; Qiu, H. X.; Sun, X. Y.; Wang, W.; Liu, Y.; Gao, J. P. Fabrication of Pt-Cu/RGO hybrids and their electrochemical performance for the oxidation of methanol and formic acid in acid media. Carbon 2013, 64, 11–19.

    Article  CAS  Google Scholar 

  5. Goswami, C.; Saikia, H.; Tada, K.; Tanaka, S.; Sudarsanam, P.; Bhargava, S. K.; Bharali, P. Bimetallic palladium-nickel nanoparticles anchored on carbon as high-performance electrocatalysts for oxygen reduction and formic acid oxidation reactions. ACS Appl. Energy Mater. 2020, 3, 9285–9295.

    Article  CAS  Google Scholar 

  6. Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 2019, 12, 323–329.

    Article  CAS  Google Scholar 

  7. Betts, A.; Briega-Martos, V.; Cuesta, A.; Herrero, E. Adsorbed formate is the last common intermediate in the dual-path mechanism of the electrooxidation of formic acid. ACS Catal. 2020, 10, 8120–8130.

    Article  CAS  Google Scholar 

  8. Calderón-Cárdenas, A.; Hartl, F. W.; Gallas, J. A. C.; Varela, H. Modeling the triple-path electro-oxidation of formic acid on platinum: Cyclic voltammetry and oscillations. Catal. Today 2021, 359, 90–98.

    Article  Google Scholar 

  9. Wang, Y.; Jiang, X.; Fu, G. T.; Li, Y. H.; Tang, Y. D.; Lee, J. M.; Tang, Y. W. Cu5Pt dodecahedra with low-Pt content: Facile synthesis and outstanding formic acid electrooxidation. ACS Appl. Mater. Interfaces 2019, 11, 34869–34877.

    Article  CAS  Google Scholar 

  10. Krstajić Pajić, M. N.; Stevanović, S. I.; Radmilović, V. V.; Gavrilović-Wohlmuther, A.; Zabinski, P.; Elezović, N. R.; Radmilović, V. R.; Gojković, S. L.; Jovanović, V. M. Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. Appl. Catal. B Environ. 2019, 243, 585–593.

    Article  Google Scholar 

  11. Guo, L. M.; Zhang, D. F.; Guo, L. Structure design reveals the role of Au for ORR catalytic performance optimization in PtCo-based catalysts. Adv. Funct. Mater. 2020, 30, 2001575.

    Article  CAS  Google Scholar 

  12. Zhang, Q. Q.; Liu, J. L.; Xia, T. Y.; Qi, J.; Lyu, H. C.; Luo, B. Y.; Wang, R. M.; Guo, Y. Z.; Wang, L. H.; Wang, S. G. Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells. Nano Res. 2019, 12, 2520–2527.

    Article  CAS  Google Scholar 

  13. Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

    Article  CAS  Google Scholar 

  14. Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

    Article  CAS  Google Scholar 

  15. Zhang, S.; Shao, Y. Y.; Liao, H. G.; Liu, J.; Aksay, I. A.; Yin, G. P.; Lin, Y. H. Graphene decorated with PtAu alloy nanoparticles: Facile synthesis and promising application for formic acid oxidation. Chem. Mater. 2011, 23, 1079–1081.

    Article  CAS  Google Scholar 

  16. Cappellari, P. S.; García, G.; Florez-Montaño, J.; Barbero, C. A.; Pastor, E.; Planes, G. A. Enhanced formic acid oxidation on polycrystalline platinum modified by spontaneous deposition of gold. Fourier transform infrared spectroscopy studies. J. Power Sources 2015, 296, 290–297.

    Article  CAS  Google Scholar 

  17. Kim, S. H.; Jeong, H.; Kim, J.; Lee, I. S. Fabrication of supported AuPt alloy nanocrystals with enhanced electrocatalytic activity for formic acid oxidation through conversion chemistry of layer-deposited Pt2+ on au nanocrystals. Small 2015, 11, 4884–4893.

    Article  CAS  Google Scholar 

  18. Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  CAS  Google Scholar 

  19. Li, D. W.; Meng, F. H.; Wang, H.; Jiang, X. J.; Zhu, Y. Nanoporous aupt alloy with low Pt content: A remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation. Electrochim. Acta 2016, 190, 852–861.

    Article  CAS  Google Scholar 

  20. Fan, H. S.; Cheng, M.; Wang, L.; Song, Y. J.; Cui, Y. M.; Wang, R. M. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy 2018, 48, 1–9.

    Article  CAS  Google Scholar 

  21. Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695.

    Article  CAS  Google Scholar 

  22. Lv, Y. H.; Li, X. W. PtCo/N-doped carbon sheets derived from a simple pyrolysis of graphene oxide/ZIF-67/H2PtCl6 composites as an efficient catalyst for methanol electro-oxidation. Int. J. Hydrogen Energy 2020, 45, 12766–12776.

    Article  CAS  Google Scholar 

  23. Ahn, S. H.; Klein, M. J.; Manthiram, A. 1D Co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 2017, 7, 1601979.

    Article  Google Scholar 

  24. Ren, W. N.; Zang, W. J.; Zhang, H. F.; Bian, J. L.; Chen, Z. F.; Guan, C.; Cheng, C. W. PtCo bimetallic nanoparticles encapsulated in N-doped carbon nanorod arrays for efficient electrocatalysis. Carbon 2019, 142, 206–216.

    Article  CAS  Google Scholar 

  25. Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  26. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  27. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  28. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  29. Zhu, J. Y.; Qu, T.; Su, F. M.; Wu, Y. Q.; Kang, Y.; Chen, K. F.; Yao, Y. C.; Ma, W. H.; Yang, B.; Dai, Y. N. et al. Highly dispersed Co nanoparticles decorated on a N-doped defective carbon nano-framework for a hybrid Na-air battery. Dalton Trans. 2020, 49, 1811–1821.

    Article  CAS  Google Scholar 

  30. Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2018, 11, 163–173.

    Article  CAS  Google Scholar 

  31. Gao, D. W.; Li, S.; Song, G. L.; Zha, P. F.; Li, C. C.; Wei, Q.; Lv, Y. P.; Chen, G. Z. One-pot synthesis of Pt-Cu bimetallic nanocrystals with different structures and their enhanced electrocatalytic properties. Nano Res. 2018, 11, 2612–2624.

    Article  CAS  Google Scholar 

  32. Peng, Y.; Li, L. D.; Tao, R.; Tan, L. Y.; Qiu, M. N.; Guo, L. One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation. Nano Res. 2018, 11, 3222–3232.

    Article  CAS  Google Scholar 

  33. Li, F. M.; Ding, Y.; Xiao, X.; Yin, S. B.; Hu, M. C.; Li, S.; Chen, Y. From monometallic Au nanowires to trimetallic AuPtRh nanowires: Interface control for the formic acid electrooxidation. J. Mater. Chem. A 2018, 6, 17164–17170.

    Article  CAS  Google Scholar 

  34. Zhang, L. J.; Su, Z. X.; Jiang, F. L.; Yang, L. L.; Qian, J. J.; Zhou, Y. F.; Li, W. M.; Hong, M. C. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602.

    Article  CAS  Google Scholar 

  35. Sahu, S. C.; Samantara, A. K.; Dash, A.; Juluri, R. R.; Sahu, R. K.; Mishra, B. K.; Jena, B. K. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst. Nano Res. 2013, 6, 635–643.

    Article  CAS  Google Scholar 

  36. Zhang, D.; Ye, K.; Yao, Y. C.; Liang, F.; Qu, T.; Ma, W.; Yang, B.; Dai, Y. N.; Watanabe, T. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 2019, 142, 278–284.

    Article  CAS  Google Scholar 

  37. Li, G. N.; Zheng, K. T.; Li, W. S.; He, Y. C.; Xu, C. J. Ultralow Ru-induced bimetal electrocatalysts with a Ru-enriched and mixed-valence surface anchored on a hollow carbon matrix for oxygen reduction and water splitting. ACS Appl. Mater. Interfaces 2020, 12, 51437–51447.

    Article  CAS  Google Scholar 

  38. Zhao, Q.; Liu, Q. L.; Zheng, Y. F.; Han, R.; Song, C. F.; Ji, N.; Ma, D. G. Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co3O4 nanowire. Chemosphere 2020, 244, 125532.

    Article  CAS  Google Scholar 

  39. Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

    Article  CAS  Google Scholar 

  40. Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

    Article  CAS  Google Scholar 

  41. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  42. Xu, K. X.; Xia, T. Y.; Zhou, L.; Li, S. F.; Cai, B.; Wang, R. M.; Guo, H. Z. Synthesization, characterization, and highly efficient electrocatalysis of chain-like Pt-Ni nanoparticles. Acta Phys. Sin. 2020, 69, 076101.

    Article  Google Scholar 

  43. Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

    Article  Google Scholar 

  44. Lee, H. I.; Joo, S. H.; Kim, J. H.; You, D. J.; Kim, J. M.; Park, J. N.; Chang, H.; Pak, C. Ultrastable Pt nanoparticles supported on sulfur-containing ordered mesoporous carbon via strong metal-support interaction. J. Mater. Chem. 2009, 19, 5934–5939.

    Article  CAS  Google Scholar 

  45. Du, X. Q.; Liu, C.; Du, C.; Cai, P.; Cheng, G. Z.; Luo, W. Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature. Nano Res. 2017, 10, 2856–2865.

    Article  CAS  Google Scholar 

  46. Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

    Article  CAS  Google Scholar 

  47. Hu, Y. M.; Zhu, M. Z.; Luo, X.; Wu, G.; Chao, T. T.; Qu, Y. T.; Zhou, F. Y.; Sun, R. B.; Han, X.; Li, H. et al. Coplanar Pt/c nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem., Int. Ed. 2021, 60, 6533–6538.

    Article  CAS  Google Scholar 

  48. An, L.; Yan, H. J.; Li, B.; Ma, J.; Wei, H.; Xia, D. G. Highly active N-PtTe/reduced graphene oxide intermetallic catalyst for formic acid oxidation. Nano Energy 2015, 15, 24–32.

    Article  CAS  Google Scholar 

  49. Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 499–510.

    Article  CAS  Google Scholar 

  50. Zhang, Q.; Yao, Z. Q.; Zhou, R.; Du, Y. H.; Yang, P. Fabrication of Ag/Au/Pt composite catalysts and their electrocatalytic oxidation for formic acid. Acta Chim. Sin. 2012, 70, 2149–2154.

    Article  CAS  Google Scholar 

  51. Yang, S.; Lee, H. Atomically dispersed platinum on gold nanooctahedra with high catalytic activity on formic acid oxidation. ACS Catal. 2013, 3, 437–443.

    Article  CAS  Google Scholar 

  52. Kim, Y.; Kim, H. J.; Kim, Y. S.; Choi, S. M.; Seo, M. H.; Kim, W. B. Shape- and composition-sensitive activity of Pt and PtAu catalysts for formic acid electrooxidation. J Phys Chem C 2012, 116, 18093–18100.

    Article  CAS  Google Scholar 

  53. Lim, K. H.; Chen, Z. X.; Neyman, K. M.; Rösch, N. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. J. Phys. Chem. B 2006, 110, 14890–14897.

    Article  CAS  Google Scholar 

  54. Wang, R. M. The dynamics of the peel. Nat. Catal. 2020, 3, 333–334.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the financial support from the National Natural Science Foundation of China (Nos. 51801188, 12034002, and 51971025), the China Postdoctoral Science Foundation (No. 2018M632792), program for the Innovation Team of Science and Technology in University of Henan (No. 20IRTSTHN014), Excellent Youth Foundation of He’nan Scientific Committee (No. 202300410356), the CAS Interdisciplinary Innovation Team (No. JCTD-2019-01), and Beijing Natural Science Foundation (No. 2204085). The Center of Advanced Analysis & Gene Sequencing of Zhengzhou University is acknowledged for providing characterization facilities. Shanghai Synchrotron Radiation Facility (SSRF) is acknowledged for providing X-ray absorption near edge structure (XANES) test at the BL11B beamline.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyu Xia, Haizhong Guo or Rongming Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Xia, T., Gao, H. et al. Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC. Nano Res. 15, 1221–1229 (2022). https://doi.org/10.1007/s12274-021-3629-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3629-z

Keywords

Navigation