Skip to main content
Log in

Enhanced endosomal escape of dendrigraft poly-L-lysine polymers for the efficient gene therapy of breast cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Dendrimer, such as dendrigraft poly-L-lysine (DGL) polymers, with high surface charge density, well-defined structure, and narrow poly-dispersity is often employed as a gene vector, but its transfection efficiency is still partially inhibited due to poor endosomal escape ability. Herein, we used a surface modification strategy to enhance the endosomal escape ability of DGL polymers, and thus improved its gene transfection efficiency. A library of phenylboronic acid (PBA) modified DGL polymers (PBA-DGLs) was designed to screen efficient small interfering RNA (siRNA) vectors. The lead candidate screened from the library shown a capability of inducing nearly 90% gene silencing in MDA-MB-231 cells. The study of the transfection mechanism revealed that PBA modification not only improves siRNA cellular uptake, but, more importantly, endows DGL polymers the ability of endosomal escape. One of the top candidates from polyplexes was further shielded with hyaluronic acid to construct targeted nanoparticles, and the yielding nanoparticles significantly suppressed the tumor growth in a breast cancer model by effective siRNA delivery. This research provides a general and effective strategy to enhance the endosomal escape and transfection efficiency of dendrimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555.

    Article  CAS  Google Scholar 

  2. Setten, R. L.; Rossi, J. J.; Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019, 18, 421–446.

    Article  CAS  Google Scholar 

  3. Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593.

    Article  CAS  Google Scholar 

  4. Varkouhi, A. K.; Scholte, M.; Storm, G.; Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Control. Release 2011, 151, 220–228.

    Article  CAS  Google Scholar 

  5. Yang, J. P.; Zhang, Q.; Chang, H.; Cheng, Y. Y. Surface-engineered dendrimers in gene delivery. Chem. Rev. 2015, 115, 5274–5300.

    Article  CAS  Google Scholar 

  6. Pei, D. H.; Buyanova, M. Overcoming endosomal entrapment in drug delivery. Bioconjugate Chem. 2019, 30, 273–283.

    Article  CAS  Google Scholar 

  7. Endoh, T.; Ohtsuki, T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv. Drug Deliv. Rev. 2009, 61, 704–709.

    Article  CAS  Google Scholar 

  8. Zhu, J.; Qiao, M. X.; Wang, Q.; Ye, Y. Q.; Ba, S.; Ma, J. J.; Hu, H. Y.; Zhao, X. L.; Chen, D. W. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA. Biomaterials 2018, 162, 47–59.

    Article  CAS  Google Scholar 

  9. Hwang, H. S.; Hu, J.; Na, K.; Bae, Y. H. Role of polymeric endosomolytic agents in gene transfection: A comparative study of poly(L-lysine) grafted with monomeric L-histidine analogue and poly(L-histidine). Biomacromolecules 2014, 15, 3577–3586.

    Article  CAS  Google Scholar 

  10. Mohammed, A. F.; Abdul-Wahid, A.; Huang, E. H. B.; Bolewska-Pedyczak, E.; Cydzik, M.; Broad, A. E.; Gariépy, J. The Pseudomonas aeruginosa exotoxin a translocation domain facilitates the routing of CPP-protein cargos to the cytosol of eukaryotic cells. J. Control. Release 2012, 164, 58–64.

    Article  CAS  Google Scholar 

  11. Wadia, J. S.; Stan, R. V.; Dowdy, S. F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 2004, 10, 310–315.

    Article  CAS  Google Scholar 

  12. Li, M.; Tao, Y.; Shu, Y. L.; LaRochelle, J. R.; Steinauer, A.; Thompson, D.; Schepartz, A.; Chen, Z. Y.; Liu, D. R. Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo. J. Am. Chem. Soc. 2015, 137, 14084–14093.

    Article  CAS  Google Scholar 

  13. Neundorf, I.; Rennert, R.; Hoyer, J.; Schramm, F.; Löbner, K.; Kitanovic, I.; Wölfl, S. Fusion of a short HA2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals 2009, 2, 49–65.

    Article  CAS  Google Scholar 

  14. Huang, R. Q.; Liu, S. H.; Shao, K.; Han, L.; Ke, W. L.; Liu, Y.; Li, J. F.; Huang, S. X.; Jiang, C. Evaluation and mechanism studies of pegylated dendrigraft poly-l-lysines as novel gene delivery vectors. Nanotechnology 2010, 21, 265101.

    Article  Google Scholar 

  15. Francoia, J. P.; Vial, L. Everything you always wanted to know about poly-L-lysine dendrigrafts (but were afraid to ask). Chem.—Eur. J. 2018, 24, 2806–2814.

    Article  CAS  Google Scholar 

  16. Liu, Y.; An, S.; Li, J. F.; Kuang, Y.; He, X.; Guo, Y. B.; Ma, H. J.; Zhang, Y.; Ji, B.; Jiang, C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in alzheimer’s disease mice. Biomaterials 2016, 80, 33–45.

    Article  CAS  Google Scholar 

  17. Hong, T.; Wei, Y. Z.; Xue, X. M.; Li, Y. Y.; Dong, H. Q.; Guo, X. Y.; Shi, X. Y.; He, B. A novel anti-coagulative nanocomplex in delivering miRNA-1 inhibitor against microvascular obstruction of myocardial infarction. Adv. Healthc. Mater. 2020, 9, 1901783.

    Article  CAS  Google Scholar 

  18. Cun, X. L.; Chen, J. T.; Li, M. M.; He, X.; Tang, X.; Guo, R.; Deng, M.; Li, M.; Zhang, Z. R.; He, Q. Tumor-associated fibroblast-targeted regulation and deep tumor delivery of chemotherapeutic drugs with a multifunctional size-switchable nanoparticle. ACS Appl. Mater. Interfaces 2019, 11, 39545–39559.

    Article  CAS  Google Scholar 

  19. Hofman, J.; Buncek, M.; Haluza, R.; Streinz, L.; Ledvina, M.; Cigler, P. In vitro transfection mediated by dendrigraft poly(L-lysines): The effect of structure and molecule size. Macromol. Biosci. 2013, 13, 167–176.

    Article  CAS  Google Scholar 

  20. Ryu, J. H.; Lee, G. J.; Shih, Y. R. V.; Kim, T. I.; Varghese, S. Phenylboronic acid-polymers for biomedical applications. Curr. Med. Chem. 2019, 26, 6797–6816.

    Article  CAS  Google Scholar 

  21. Springsteen, G.; Wang, B. H. A detailed examination of boronic acid-diol comlexation. Tetrahedron 2002, 58, 5291–5300.

    Article  CAS  Google Scholar 

  22. Wang, J.; Wu, W.; Zhang, Y. J.; Wang, X.; Qian, H. Q.; Liu, B. R.; Jiang, X. Q. The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors. Biomaterials 2014, 35, 866–878.

    Article  CAS  Google Scholar 

  23. Liu, C. Y.; Shao, N. M.; Wang, Y. T.; Cheng, Y. Y. Clustering small dendrimers into nanoaggregates for efficient DNA and siRNA delivery with minimal toxicity. Adv. Healthc. Mater. 2016, 5, 584–592.

    Article  CAS  Google Scholar 

  24. Liu, H. M.; Chang, H.; Lv, J.; Jiang, C.; Li, Z. X.; Wang, F.; Wang, H.; Wang, M. M.; Liu, C. Y.; Wang, X. Y. et al. Screening of efficient siRNA carriers in a library of surface-engineered dendrimers. Sci. Rep. 2016, 6, 25069.

    Article  CAS  Google Scholar 

  25. Liu, C. Y.; Wan, T.; Wang, H.; Zhang, S.; Ping, Y.; Cheng, Y. Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaaw8922.

    Article  CAS  Google Scholar 

  26. Ma, D.; Liu, H. M.; Zhao, P. P.; Ye, L.; Zou, H. B.; Zhao, X.; Dai, H. L.; Kong, X. M.; Liu, P. F. Programing assembling/releasing multifunctional miRNA nanomedicine to treat prostate cancer. ACS Appl. Mater. Interfaces 2020, 12, 9032–9040.

    Article  CAS  Google Scholar 

  27. Ji, M. Y.; Li, P.; Sheng, N.; Liu, L. L.; Pan, H.; Wang, C.; Cai, L. T.; Ma, Y. F. Sialic acid-targeted nanovectors with phenylboronic acid-grafted polyethylenimine robustly enhance siRNA-based cancer therapy. ACS Appl. Mater. Interfaces 2016, 5, 9565–9576.

    Article  Google Scholar 

  28. Naito, M.; Ishii, T.; Matsumoto, A.; Miyata, K.; Miyahara, Y.; Kataoka, K. A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew. Chem., Int. Ed. 2012, 51, 10751–10755.

    Article  CAS  Google Scholar 

  29. Lee, K. S.; Burke, T. R. Jr.; Park, J. E.; Bang, J. K.; Lee, E. Recent advances and new strategies in targeting Plk1 for anticancer therapy. Trends Pharmacol. Sci. 2015, 36, 858–877.

    Article  CAS  Google Scholar 

  30. Jiang, C. P.; Qi, Z. T.; Jia, H. B.; Huang, Y. L.; Wang, Y. B.; Zhang, W. L.; Wu, Z. M.; Yang, H.; Liu, J. P. ATP-responsive low-molecular-weight polyethylenimine-based supramolecular assembly via host-guest interaction for gene delivery. Biomacromolecules 2019, 20, 478–489.

    Article  CAS  Google Scholar 

  31. Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Matsumoto, A.; Miyahara, Y.; Nishiyama, N.; Kataoka, K. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J. Am. Chem. Soc. 2013, 135, 15501–15507.

    Article  CAS  Google Scholar 

  32. Fan, W. W.; Xia, D. N.; Zhu, Q. L.; Li, X. Y.; He, S. F.; Zhu, C. L.; Guo, S. Y.; Hovgaard, L.; Yang, M. S.; Gan, Y. Functional nano-particles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials 2018, 151, 13–23.

    Article  CAS  Google Scholar 

  33. Piest, M.; Engbersen, J. F. J. Role of boronic acid moieties in poly(amido amine)s for gene delivery. J. Control. Release 2011, 155, 331–340.

    Article  CAS  Google Scholar 

  34. Otsuka, H.; Uchimura, E.; Koshino, H.; Okano, T.; Kataoka, K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 2003, 125, 3493–3502.

    Article  CAS  Google Scholar 

  35. Zhao, D.; Xu, J. Q.; Yi, X. Q.; Zhang, Q.; Cheng, S. X.; Zhuo, R. X.; Li, F. pH-activated targeting drug delivery system based on the selective binding of phenylboronic acid. ACS Appl. Mater. Interfaces 2016, 5, 14845–14854.

    Article  Google Scholar 

  36. Kim, K.; Ryu, K.; Kim, T. I. Cationic methylcellulose derivative with serum-compatibility and endosome buffering ability for gene delivery systems. Carbohydr. Polym. 2014, 110, 268–277.

    Article  CAS  Google Scholar 

  37. Shim, M. S.; Wang, X.; Ragan, R.; Kwon, Y. J. Dynamics of nucleic acid/cationic polymer complexation and disassembly under biologically simulated conditions using in situ atomic force microscopy. Microsc. Res. Tech. 2010, 73, 845–856.

    Article  CAS  Google Scholar 

  38. Zhou, Z. W.; Zhang, Q. Y.; Zhang, M. H.; Li, H. P.; Chen, G.; Qian, C. G.; Oupicky, D.; Sun, M. J. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Theranostics 2018, 5, 4604–4619.

    Article  Google Scholar 

  39. Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. Atp-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

    Article  Google Scholar 

  40. Wickens, J. M.; Alsaab, H. O.; Kesharwani, P.; Bhise, K.; Amin, M. C. I.; Tekade, R. K.; Gupta, U.; Iyer, A. K. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov. Today 2017, 22, 665–680.

    Article  CAS  Google Scholar 

  41. Iwanaga, M.; Kodama, Y.; Muro, T.; Nakagawa, H.; Kurosaki, T.; Sato, K.; Nakamura, T.; Kitahara, T.; Sasaki, H. Biocompatible complex coated with glycosaminoglycan for gene delivery. J. Drug Target. 2017, 25, 370–378.

    Article  CAS  Google Scholar 

  42. Lv, J.; He, B.W.; Yu, J. W.; Wang, Y. T.; Wang, C. P.; Zhang, S.; Wang, H.; Hu, J. J.; Zhang, Q.; Cheng, Y. Y. Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials 2018, 182, 167–175.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the grants from the National Natural Science Foundation of China (Nos. 81771968, 21704061, and 82003166), Natural Science Foundation of Shanghai (No. 21ZR1439200), Shanghai Sailing Program (No. 17YF1411000), Shanghai Municipal Education Commission-Gaofeng Clinical Grant Support (No. 20181705), Shanghai Municipal Commission of Health and Family Planning (No. 201840020). and the Medical-Engineering Joint Funds from the Shanghai Jiao Tong University (Nos. ZH2018ZDA05 and YG2016QN54).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianming Kong or Peifeng Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Liu, H., Fei, X. et al. Enhanced endosomal escape of dendrigraft poly-L-lysine polymers for the efficient gene therapy of breast cancer. Nano Res. 15, 1135–1144 (2022). https://doi.org/10.1007/s12274-021-3616-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3616-4

Keywords

Navigation