Skip to main content
Log in

Nanoscale engineering of conducting polymers for emerging applications in soft electronics

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Soft electronics featuring exceptional mechanical compliance and excellent electrical performance hold great promise for applications in soft robotics, artificial intelligence, bio-integrated electronics, and wearable electronics. Intrinsically stretchable and conductive materials are crucial for soft electronics, enabling large-area and scalable fabrication, high device density, and good mechanical compliance. Conducting polymers are inherently stretchable and conductive. They can be precisely synthesized from vastly available building blocks, and thus they provide a fruitful platform for fabricating soft electronics. However, amorphous bulk-phase conducting polymers typically exhibit poor mechanical and electrical characteristics. Consequently, it is highly desirable to develop novel engineering approaches to overcome the intrinsic limitations of conducting polymers. In recent years, numerous engineering strategies have been developed to enhance their performances in soft electronic devices via constructing various nanostructures. In this review, we first summarize several unique methodologies to fabricate conducting polymer-based nanostructures. We then discuss how nanoscale engineering approaches can improve several crucial parameters, including electrical conductivity, stretchability, sensitivity, and self-healing property of conducting polymers. Moreover, we also discuss device-level integration of conducting polymer-based nanostructures with other materials for applications in skin-inspired electronics and bio-integrated electronics. Finally, we provide perspectives on challenges and future directions in engineering nanostructured conducting polymers for soft electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    Article  CAS  Google Scholar 

  2. Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

    Article  CAS  Google Scholar 

  3. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  CAS  Google Scholar 

  4. Wang, L. L.; Chen, D.; Jiang, K.; Shen, G. Z. New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 2017, 46, 6764–6815.

    Article  CAS  Google Scholar 

  5. Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.

    Article  Google Scholar 

  6. Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

    Article  CAS  Google Scholar 

  7. Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.

    Article  Google Scholar 

  8. Wang, S. H.; Oh, J. Y.; Xu, J.; Tran, H.; Bao, Z. N. Skin-inspired electronics: An emerging paradigm. Acc. Chem. Res. 2018, 51, 1033–1045.

    Article  CAS  Google Scholar 

  9. Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907–913.

    Article  CAS  Google Scholar 

  10. Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.

    Article  CAS  Google Scholar 

  11. van de Burgt, Y.; Melianas, A.; Keene, S. T.; Malliaras, G.; Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 2018, 1, 386–397.

    Article  Google Scholar 

  12. Wang, T.; Zhang, Y.; Liu, Q. C.; Cheng, W.; Wang, X. R.; Pan, L. J.; Xu, B. X.; Xu, H. X. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv. Funct. Mater. 2018, 28, 1705551.

    Article  CAS  Google Scholar 

  13. Chen, X.; Park, Y. J.; Kang, M.; Kang, S. K.; Koo, J.; Shinde, S. M.; Shin, J.; Jeon, S.; Park, G.; Yan, Y. et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 2018, 9, 1690.

    Article  CAS  Google Scholar 

  14. Yu, X. E.; Xie, Z. Q.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H. W.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D. F. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479.

    Article  CAS  Google Scholar 

  15. Lim, S.; Son, D.; Kim, J.; Lee, Y. B.; Song, J. K.; Choi, S.; Lee, D. J.; Kim, J. H.; Lee, M.; Hyeon, T. et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 2015, 25, 375–383.

    Article  CAS  Google Scholar 

  16. Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523–533.

    Article  CAS  Google Scholar 

  17. Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.

    Article  CAS  Google Scholar 

  18. Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

    Article  CAS  Google Scholar 

  19. Li, T.; Li, Y.; Zhang, T. Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 2019, 52, 288–296.

    Article  CAS  Google Scholar 

  20. Gao, Y.; Zhang, Y.; Wang, X.; Sim, K.; Liu, J. S.; Chen, J.; Feng, X.; Xu, H. X.; Yu, C. J. Moisture-triggered physically transient electronics. Sci. Adv. 2017, 3, e1701222.

    Article  CAS  Google Scholar 

  21. Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

    Article  CAS  Google Scholar 

  22. Zhang, L.; Kumar, K. S.; He, H.; Cai, C. J.; He, X.; Gao, H. X.; Yue, S. Z.; Li, C. S.; Seet, R. C. S.; Ren, H. L.; Ouyang, J. Y. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683.

    Article  CAS  Google Scholar 

  23. Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

    Article  CAS  Google Scholar 

  24. Xue, Z. G.; Song, H.; Rogers, J. A.; Zhang, Y. H.; Huang, Y. G. Mechanically-guided structural designs in stretchable inorganic electronics. Adv. Mater. 2020, 32, 1902254.

    Article  CAS  Google Scholar 

  25. Park, J. K.; Nan, K. W.; Luan, H. W.; Zheng, N.; Zhao, S. W.; Zhang, H.; Cheng, X.; Wang, H. L.; Li, K.; Xie, T. et al. Remotely triggered assembly of 3D mesostructures through shape-memory effects. Adv. Mater. 2019, 31, 1905715.

    Article  CAS  Google Scholar 

  26. Kleinschmidt, A. T.; Lipomi, D. J. Stretchable conjugated polymers: A case study in topic selection for new research groups. Acc. Chem. Res. 2018, 51, 3134–3143.

    Article  CAS  Google Scholar 

  27. Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. B.; Jeon, S.; Chung, D. Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809.

    Article  CAS  Google Scholar 

  28. Sim, K.; Rao, Z.; Ershad, F.; Yu, C. J. Rubbery electronics fully made of stretchable elastomeric electronic materials. Adv. Mater. 2020, 32, 1902417.

    Article  CAS  Google Scholar 

  29. Liu, K.; Jiang, Y. W.; Bao, Z. N.; Yan, X. Z. Skin-inspired electronics enabled by supramolecular polymeric materials. CCS Chem. 2019, 1, 431–447.

    Article  CAS  Google Scholar 

  30. Kayser, L. V.; Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133.

    Article  CAS  Google Scholar 

  31. Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M. Conductive polymers: Opportunities and challenges in biomedical applications. Chem. Rev. 2018, 118, 6766–6843.

    Article  CAS  Google Scholar 

  32. Root, S. E.; Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 2017, 117, 6467–6499.

    Article  CAS  Google Scholar 

  33. Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987.

    Article  CAS  Google Scholar 

  34. Wang, M.; Baek, P.; Akbarinejad, A.; Barker, D.; Travas-Sejdic, J. Conjugated polymers and composites for stretchable organic electronics. J. Mater. Chem. C 2019, 7, 5534–5552.

    Article  CAS  Google Scholar 

  35. Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696.

    Article  CAS  Google Scholar 

  36. Zhao, Y.; Liu, B. R.; Pan, L. J.; Yu, G. H. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 2013, 6, 2856–2870.

    Article  CAS  Google Scholar 

  37. Zhao, F.; Shi, Y.; Pan, L. J.; Yu, G. H. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications. Acc. Chem. Res. 2017, 50, 1734–1743.

    Article  CAS  Google Scholar 

  38. Ghosh, S.; Maiyalagan, T.; Basu, R. N. Nanostructured conducting polymers for energy applications: Towards a sustainable platform. Nanoscale 2016, 8, 6921–6947.

    Article  CAS  Google Scholar 

  39. Xue, Y.; Chen, S.; Yu, J. R.; Bunes, B. R.; Xue, Z. X.; Xu, J. K.; Lu, B. Y.; Zang, L. Nanostructured conducting polymers and their composites: Synthesis methodologies, morphologies and applications. J. Mater. Chem. C 2020, 8, 10136–10159.

    Article  CAS  Google Scholar 

  40. Zhang, T.; Qi, H. Y.; Liao, Z. Q.; Horev, Y. D.; Panes-Ruiz, L. A.; Petkov, P. S.; Zhang, Z.; Shivhare, R.; Zhang, P. P.; Liu, K. J. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 2019, 10, 4225.

    Article  CAS  Google Scholar 

  41. Xu, Y. F.; Wang, X. X.; Zhou, J. W.; Song, B.; Jiang, Z.; Lee, E. M. Y.; Huberman, S.; Gleason, K. K.; Chen, G. Molecular engineered conjugated polymer with high thermal conductivity. Sci. Adv. 2018, 4, eaar3031.

    Article  CAS  Google Scholar 

  42. Kim, M.; Kim, H. I.; Ryu, S. U.; Son, S. Y.; Park, S. A.; Khan, N.; Shin, W. S.; Song, C. E.; Park, T. Improving the photovoltaic performance and mechanical stability of flexible all-polymer solar cells via tailoring intermolecular interactions. Chem. Mater. 2019, 31, 5047–5055.

    Article  CAS  Google Scholar 

  43. Lin, B. J.; Zhang, L.; Zhao, H.; Xu, X. B.; Zhou, K.; Zhang, S.; Gou, L.; Fan, B. B.; Zhang, L.; Yan, H. P. et al. Molecular packing control enables excellent performance and mechanical property of blade-cast all-polymer solar cells. Nano Energy 2019, 59, 277–284.

    Article  CAS  Google Scholar 

  44. Chen, A. X.; Kleinschmidt, A. T.; Choudhary, K.; Lipomi, D. J. Beyond stretchability: Strength, toughness, and elastic range in semiconducting polymers. Chem. Mater. 2020, 32, 7582–7601.

    Article  CAS  Google Scholar 

  45. Chung, J.; Khot, A.; Savoie, B. M.; Boudouris, B. W. 100th Anniversary of Macromolecular Science Viewpoint: Recent advances and opportunities for mixed ion and charge conducting polymers. ACS Macro Lett. 2020, 9, 646–655.

    Article  CAS  Google Scholar 

  46. Oh, J. Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H. C.; Kang, J.; Park, J.; Gu, X. D. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 2019, 5, eaav3097.

    Article  CAS  Google Scholar 

  47. Mun, J.; Kang, J.; Zheng, Y.; Luo, S. C.; Wu, H. C.; Matsuhisa, N.; Xu, J.; Wang, G. J. N.; Yun, Y.; Xue, G. et al. Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers. Adv. Mater. 2019, 31, 1903912.

    Article  CAS  Google Scholar 

  48. Ditte, K.; Perez, J.; Chae, S.; Hambsch, M.; Al-Hussein, M.; Komber, H.; Formanek, P.; Mannsfeld, S. C. B.; Fery, A.; Kiriy, A. et al. Ultrasoft and high-mobility block copolymers for skin-compatible electronics. Adv. Mater. 2021, 33, 2005416.

    Article  CAS  Google Scholar 

  49. Ocheje, M. U.; Charron, B. P.; Cheng, Y. H.; Chuang, C. H.; Soldera, A.; Chiu, Y. C.; Rondeau-Gagne, S. Amide-containing alkyl chains in conjugated polymers: Effect on self-assembly and electronic properties. Macromolecules 2018, 57, 1336–1344.

    Article  CAS  Google Scholar 

  50. Kayser, L. V.; Russell, M. D.; Rodriquez, D.; Abuhamdieh, S. N.; Dhong, C.; Khan, S.; Stein, A. N.; Ramírez, J.; Lipomi, D. J. RAFT Polymerization of an intrinsically stretchable water-soluble block copolymer scaffold for PEDOT. Chem. Mater. 2018, 30, 4459–4468.

    Article  CAS  Google Scholar 

  51. Yano, H.; Kudo, K.; Marumo, K.; Okuzaki, H. Fully soluble self-doped poly(3,4-ethylenedioxythiophene) with an electrical conductivity greater than 1000 S cm−1. Sci. Adv. 2019, 5, eaav9492.

    Article  CAS  Google Scholar 

  52. Inal, S.; Rivnay, J.; Suiu, A. O.; Malliaras, G. G.; McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 2018, 57, 1368–1376.

    Article  CAS  Google Scholar 

  53. Sugiyama, F.; Kleinschmidt, A. T.; Kayser, L. V.; Rodriquez, D.; Finn III, M.; Alkhadra, M. A.; Wan, J. M. H.; Ramírez, J.; Chiang, A. S. C.; Root, S. E. et al. Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers. Polym. Chem. 2018, 9, 4354–4363.

    Article  CAS  Google Scholar 

  54. Baek, P.; Voorhaar, L.; Barker, D.; Travas-Sejdic, J. Molecular approach to conjugated polymers with biomimetic properties. Acc. Chem. Res. 2018, 57, 1581–1589.

    Article  CAS  Google Scholar 

  55. Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z. N. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Prog. Polym. Sci. 2020, 100, 101181.

    Article  CAS  Google Scholar 

  56. Sim, K.; Rao, Z.; Kim, H. J.; Thukral, A.; Shim, H.; Yu, C. J. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 2019, 5, eaav5749.

    Article  CAS  Google Scholar 

  57. Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.

    Article  CAS  Google Scholar 

  58. Oh, Y. J.; Rondeau-Gagné, S.; Chiu, Y. C.; Chortos, A.; Lissel, F.; Wang, G. J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539, 411–415.

    Article  CAS  Google Scholar 

  59. Yuk, H.; Lu, B. Y.; Lin, S.; Qu, K.; Xu, J. K.; Luo, J. H.; Zhao, X. H. 3D printing of conducting polymers. Nat. Commun. 2020, 11, 1604.

    Article  CAS  Google Scholar 

  60. Li, C.; Bai, H.; Shi, G. Q. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem. Soc. Rev. 2009, 38, 2397–2409.

    Article  CAS  Google Scholar 

  61. Wegner, G. Polymers with metal-like conductivity—A review of their synthesis, structure and properties. Angew. Chem., Int. Ed. 1981, 20, 361–381.

    Article  Google Scholar 

  62. Li, P. P.; Jin, Z. Y.; Peng, L. L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. H. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 2018, 30, 1800124.

    Article  CAS  Google Scholar 

  63. Li, D.; Huang, J. X.; Kaner, R. B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2009, 42, 135–145.

    Article  CAS  Google Scholar 

  64. Jeon, J.; Tan, A. T. L.; Lee, J.; Park, J. E.; Won, S.; Kim, S.; Bedewy, M.; Go, J.; Kim, J. K.; Hart, A. J.; Wie, J. J. High-speed production of crystalline semiconducting polymer line arrays by meniscus oscillation self-assembly. ACS Nano 2020, 14, 17254–17261.

    Article  CAS  Google Scholar 

  65. Dauzon, E.; Mansour, A. E.; Niazi, M. R.; Munir, R.; Smilgies, D. M.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A. Conducting and stretchable PEDOT:PSS electrodes: Role of additives on self-assembly, morphology, and transport. ACS Appl. Mater. Interfaces 2019, 11, 17570–17582.

    Article  CAS  Google Scholar 

  66. Vosgueritchian, M.; Lipomi, D. J.; Bao, Z. N. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 2012, 22, 421–428.

    Article  CAS  Google Scholar 

  67. Zhou, Y. H.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J. et al. A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336, 327–332.

    Article  CAS  Google Scholar 

  68. Lee, Y. Y.; Kang, H. Y.; Gwon, S. H.; Choi, G. M.; Lim, S. M.; Sun, J. Y.; Joo, Y. C. A strain-insensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels. Adv. Mater. 2016, 28, 1636–1643.

    Article  CAS  Google Scholar 

  69. Oh, J. Y.; Kim, S.; Baik, H. K.; Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 2016, 28, 4455–4461.

    Article  CAS  Google Scholar 

  70. De Izarra, A.; Park, S.; Lee, J.; Lansac, Y.; Jang, Y. H. Ionic liquid designed for PEDOT:PSS conductivity enhancement. J. Am. Chem. Soc. 2018, 140, 5375–5384.

    Article  CAS  Google Scholar 

  71. Savagatrup, S.; Chan, E.; Renteria-Garcia, S. M.; Printz, A. D.; Zaretski, A. V.; O’Connor, T. F.; Rodriquez, D.; Valle, E.; Lipomi, D. J. Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv. Funct. Mater. 2015, 25, 427–436.

    Article  CAS  Google Scholar 

  72. Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.

  73. Huang, J. X.; Kaner, R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855.

    Article  CAS  Google Scholar 

  74. Paul, A. O.; Heeger, A. J.; Wudl, F. Optical properties of conducting polymers. Chem. Rev. 1988, 88, 183–200.

    Article  Google Scholar 

  75. Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev. 2010, 110, 4724–4771.

    Article  CAS  Google Scholar 

  76. Guo, X. G.; Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 2020, 19, 922–928.

    Article  CAS  Google Scholar 

  77. Kim, Y. J.; Jung, H. T.; Ahn, C. W.; Jeon, H. J. Simultaneously induced self-assembly of poly(3-hexylthiophene) (P3HT) nanowires and thin-film fabrication via solution-floating method on a water substrate. Adv. Mater. Interfaces, 2017, 4, 1700342.

    Article  CAS  Google Scholar 

  78. Guan, Y. S.; Zhang, Z. L.; Tang, Y. C.; Yin, J.; Ren, S. Q. Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv. Mater. 2018, 30, 1706390.

    Article  CAS  Google Scholar 

  79. Xu, J.; Wu, H. C.; Zhu, C. X.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S. H.; Molina-Lopez, F.; Gu, X. D.; Luo, S. C. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 2019, 18, 594–601.

    Article  CAS  Google Scholar 

  80. Worfolk, B. J.; Andrews, S. C.; Park, S.; Reinspach, J.; Liu, N.; Toney, M. F.; Mannsfeld, S. C. B.; Bao, Z. N. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 2015, 112, 14138–14143.

    Article  CAS  Google Scholar 

  81. Pan, L. J.; Yu, G. H.; Zhai, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C. K.; Shi, Y.; Cui, Y. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292.

    Article  CAS  Google Scholar 

  82. Lu, X. F.; Wang, C.; Favier, F.; Pinna, N. Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance. Adv. Energy Mater. 2017, 7, 1601301.

    Article  CAS  Google Scholar 

  83. Long, Y. Z.; Li, M. M.; Gu, C. Z.; Wan, M. X.; Duvail, J. L.; Liu, Z. W.; Fan, Z. Y. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 2011, 36, 1415–1442.

    Article  CAS  Google Scholar 

  84. Shin, M.; Song, J. H.; Lim, G. H.; Lim, B.; Park, J. J.; Jeong, U. Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv. Mater. 2014, 26, 3706–3711.

    Article  CAS  Google Scholar 

  85. Park, H.; Lee, S. J.; Kim, S.; Ryu, H. W.; Lee, S. H.; Choi, H. H.; Cheong, I. W.; Kim, J. H. Conducting polymer nanofiber mats via combination of electrospinning and oxidative polymerization. Polymer 2013, 54, 4155–4160.

    Article  CAS  Google Scholar 

  86. Xue, M. Q.; Li, F. W.; Chen, D.; Yang, Z. H.; Wang, X. W.; Ji, J. H. High-oriented polypyrrole nanotubes for next-generation gas sensor. Adv. Mater. 2016, 28, 8265–8270.

    Article  CAS  Google Scholar 

  87. Choi, I. Y.; Lee, J.; Ahn, H.; Lee, J.; Choi, H. C.; Park, M. J. High-conductivity two-dimensional polyaniline nanosheets developed on ice surfaces. Angew. Chem., Int. Ed. 2015, 54, 10497–10501.

    Article  CAS  Google Scholar 

  88. Barpuzary, D.; Kim, K.; Park, M. J. Two-dimensional growth of large-area conjugated polymers on ice surfaces: High conductivity and photoelectrochemical applications. ACS Nano 2019, 13, 3953–3963.

    Article  CAS  Google Scholar 

  89. Feig, V. R.; Tran, H.; Lee, M.; Bao, Z. N. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 2018, 9, 2740.

    Article  CAS  Google Scholar 

  90. Guan, Y. S.; Thukral, A.; Zhang, S.; Sim, K.; Wang, X.; Zhang, Y. C.; Ershad, F.; Rao, Z.; Pan, F. J.; Wang, P. et al. Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Sci. Adv. 2020, 6, eabb3656.

    Article  CAS  Google Scholar 

  91. Hinckley, A. C.; Andrews, S. C.; Dunham, M. T.; Sood, A.; Barako, M. T.; Schneider, S.; Toney, M. F.; Goodson, K. E.; Bao, Z. N. Achieving high thermoelectric performance and metallic transport in solvent-sheared PEDOT:PSS. Adv. Electron. Mater. 2021, 7, 2001190.

    Article  CAS  Google Scholar 

  92. Zhao, Y. S.; Zhang, B. Z.; Yao, B. W.; Qiu, Y.; Peng, Z. H.; Zhang, Y. C.; Alsaid, Y.; Frenkel, I.; Youssef, K.; Pei, Q. B. et al. Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 2020, 3, 1196–1210.

    Article  Google Scholar 

  93. Wang, X. W.; Xiong, Z. P.; Liu, Z.; Zhang, T. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv. Mater. 2015, 27, 1370–1375.

    Article  CAS  Google Scholar 

  94. Wang, Z. Y.; Wang, T.; Zhuang, M. D.; Xu, H. X. Stretchable polymer composite with a 3D segregated structure of PEDOT:PSS for multifunctional touchless sensing. ACS Appl. Mater. Interfaces 2019, 11, 45301–45309.

    Article  CAS  Google Scholar 

  95. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  CAS  Google Scholar 

  96. Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165.

    Article  CAS  Google Scholar 

  97. Zhai, D. Y.; Liu, B. R.; Shi, Y.; Pan, L. J.; Wang, Y. Q.; Li, W. B.; Zhang, R.; Yu, G. H. Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 2013, 7, 3540–3546.

    Article  CAS  Google Scholar 

  98. Li, L. L.; Wang, Y. Q.; Pan, L. J.; Shi, Y.; Cheng, W.; Shi, Y.; Yu, G. H. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett. 2015, 15, 1146–1151.

    Article  CAS  Google Scholar 

  99. Zhang, S. M.; Chen, Y. H.; Liu, H.; Wang, Z. T.; Ling, H. N.; Wang, C. S.; Ni, J. H.; Çelebi-Saltik, B.; Wang, X. C.; Meng, X.; Kim, H. J. et al. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Adv. Mater. 2020, 32, 1904752.

    Article  CAS  Google Scholar 

  100. Bihar, E.; Roberts, T.; Saadaoui, M.; Hervé, T.; De Graaf, J. B.; Malliaras, G. G. Inkjet-printed PEDOT:PSS electrodes on paper for electrocardiography. Adv. Healthc. Mater. 2017, 6, 1601167.

    Article  CAS  Google Scholar 

  101. Feig, V. R.; Tran, H.; Lee, M.; Liu, K.; Huang, Z. J.; Beker, L.; Mackanic, D. G.; Bao, Z. N. An electrochemical gelation method for patterning conductive PEDOT:PSS hydrogels. Adv. Mater. 2019, 31, 1902869.

    Article  CAS  Google Scholar 

  102. Bao, Z. N.; Chen, X. D. Flexible and stretchable devices. Adv. Mater. 2016, 28, 4177–4179.

    Article  CAS  Google Scholar 

  103. Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

    Article  CAS  Google Scholar 

  104. Kang, J.; Tok, J. B. H.; Bao, Z. N. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150.

    Article  Google Scholar 

  105. Chen, D.; Pei, Q. B. Electronic muscles and skins: A review of soft sensors and actuators. Chem. Rev. 2017, 117, 11239–11268.

    Article  CAS  Google Scholar 

  106. Shih, B.; Shah, D.; Li, J. X.; Thuruthel, T. G.; Park, Y. L.; Iida, F.; Bao, Z. N.; Kramer-Bottiglio, R.; Tolley, M. T. Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 2020, 5, eaaz9239.

    Article  Google Scholar 

  107. Zaia, E. W.; Gordon, M. P.; Yuan, P. Y.; Urban, J. J. Progress and perspective: Soft thermoelectric materials for wearable and internet-of-things applications. Adv. Electron. Mater. 2019, 5, 1800823.

    Article  CAS  Google Scholar 

  108. Tran, H.; Feig, V. R.; Liu, K.; Zheng, Y.; Bao, Z. N. Polymer chemistries underpinning materials for skin-inspired electronics. Macromolecules 2019, 52, 3965–3974.

    Article  CAS  Google Scholar 

  109. Son, D.; Bao, Z. N. Nanomaterials in skin-inspired electronics: Toward soft and robust skin-like electronic nanosystems. ACS Nano 2018, 12, 11731–11739.

    Article  CAS  Google Scholar 

  110. Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

    Article  CAS  Google Scholar 

  111. Rao, Z.; Ershad, F.; Almasri, A.; Gonzalez, L.; Wu, X. Y.; Yu, C. J. Soft electronics for the skin: From health monitors to human-machine interfaces. Adv. Mater. Technol. 2020, 5, 2000233.

    Article  CAS  Google Scholar 

  112. Feiner, R.; Dvir, T. Tissue-electronics interfaces: From implantable devices to engineered tissues. Nat. Rev. Mater. 2018, 3, 17076.

    Article  CAS  Google Scholar 

  113. Liu, Y. X.; Liu, J.; Chen, S. C.; Lei, T.; Kim, Y.; Niu, S. M.; Wang, H. L.; Wang, X.; Foudeh, A. M.; Tok, J. B. H. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 2019, 3, 58–68.

    Article  CAS  Google Scholar 

  114. Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the research funds from the National Key R&D Program of China (No. 2017YFA0207301), the National Natural Science Foundation of China (No. 21875235), and the Fundamental Research Funds for the Central Universities. The authors would also like to acknowledge the generous support from the USTC Center for Micro- and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wang or Hangxun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Bao, Y., Zhuang, M. et al. Nanoscale engineering of conducting polymers for emerging applications in soft electronics. Nano Res. 14, 3112–3125 (2021). https://doi.org/10.1007/s12274-021-3515-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3515-8

Keywords

Navigation