Skip to main content
Log in

Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries

  • Flagship Review
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The growing concern for the exhaustion of fossil energy and the rapid revolution of electronics have created a rising demand for electrical energy storage devices with high energy density, for example, lithium secondary batteries (LSBs). With high surface area, low cost, excellent mechanical strength, and electrochemical stability, amorphous carbon-based materials (ACMs) have been widely investigated as promising platform for anode materials in the LSBs. In this review, we firstly summarize recent advances in the synthesis of the ACMs with various morphologies, ranging from zero- to three-dimensional structures. Then, the use of ACMs in Li-ion batteries and Li metal batteries is discussed respectively with the focus on the relationship between the structural features of the as-prepared ACMs and their roles in promoting electrochemical performances. Finally, the remaining challenges and the possible prospects for the use of ACMs in the LSBs are proposed to provide some useful clews for the future developments of this attractive area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S. et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86.

    Article  CAS  Google Scholar 

  2. Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069.

    Article  CAS  Google Scholar 

  3. Cha, H.; Kim, J.; Lee, Y.; Cho, J.; Park, M. Issues and challenges facing flexible lithium-ion batteries for practical application. Small 2018, 14, 1702989.

    Article  Google Scholar 

  4. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Article  Google Scholar 

  5. Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Towards better Li metal anodes: Challenges and strategies. Mater. Today 2020, 33, 56–74.

    Article  CAS  Google Scholar 

  6. Shen, K.; Wang, Z.; Bi, X. X.; Ying, Y.; Zhang, D.; Jin, C. B.; Hou, G. Y.; Cao, H. Z.; Wu, L. K.; Zheng, G. Q. et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries. Adv. Energy Mater. 2019, 9, 1900260.

    Article  Google Scholar 

  7. Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Seo, I. G.; Ma, Y. Q.; Chen, L.; Cottingham, P.; Zhou, C. W. Functional interlayer of PVDF-HFP and carbon nanofiber for long-life lithium-sulfur batteries. Nano Res. 2018, 11, 3340–3352.

    Article  CAS  Google Scholar 

  8. Liu, T. F.; Hu, H. L.; Ding, X. F.; Yuan, H. D.; Jin, C. B.; Nai, J. W.; Liu, Y. J.; Wang, Y.; Wan, Y. H.; Tao, X. Y. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009-2020). Energy Storage Mater. 2020, 30, 346–366.

    Article  Google Scholar 

  9. Kaskhedikar, N. A.; Maier, J. Lithium storage in carbon nanostructures. Adv. Mater. 2009, 21, 2664–2680.

    Article  CAS  Google Scholar 

  10. Qie, L.; Chen, W. M.; Xiong, X. Q.; Hu, C. C.; Zou, F.; Hu, P.; Huang, Y. H. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2015, 2, 1500195.

    Article  Google Scholar 

  11. Ni, W.; Shi, L. Y. Review article: Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. J. Vac. Sci. Technol. A 2019, 37, 040803.

    Article  Google Scholar 

  12. Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823–2851.

    Article  CAS  Google Scholar 

  13. Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous nanocages of Cu-Ni-Fe Hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 4189–4194.

    Article  CAS  Google Scholar 

  14. Liu, J. Z.; Hu, Q.; Wang, Y.; Yang, Z.; Fan, X. Y.; Liu, L. M.; Guo, L. Achieving delafossite analog by in situ electrochemical self-reconstruction as an oxygen-evolving catalyst. Proc. Natl. Acad. Sci. USA 2020, 117, 21906–21913.

    Article  CAS  Google Scholar 

  15. Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.

    Article  Google Scholar 

  16. Nai, J. W.; Kang, J. X.; Guo, L. Tailoring the shape of amorphous nanomaterials: Recent developments and applications. Sci. China Mater. 2015, 55, 44–59.

    Article  Google Scholar 

  17. Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.

    Article  Google Scholar 

  18. Zhu, J. G.; Li, P. K.; Chen, X.; Legut, D.; Fan, Y. C.; Zhang, R. F.; Lu, Y. Y.; Cheng, X. B.; Zhang, Q. F. Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Mater. 2019, 16, 426–433.

    Article  Google Scholar 

  19. Xiang, H. Q.; Fang, S. B.; Jiang, Y. Y. Mechanism of lithium insertion in carbons pyrolyzed at low temperature. Chin. Sci. Bull. 1999, 44, 385–390.

    Article  CAS  Google Scholar 

  20. Kim, H.; Kim, S. W.; Park, Y. U.; Gwon, H.; Seo, D. H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813–821.

    Article  CAS  Google Scholar 

  21. Zhu, Y. E.; Gu, H. C.; Chen, Y. N.; Yang, D. H.; Wei, J. P.; Zhou, Z. Hard carbon derived from corn straw piths as anode materials for sodium ion batteries. Ionics 2018, 24, 1075–1081.

    Article  CAS  Google Scholar 

  22. Yang, T. Z.; Qian, T.; Wang, M. F.; Shen, X. W.; Xu, N.; Sun, Z. Z.; Yan, C. L. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 2016, 28, 539–545.

    Article  CAS  Google Scholar 

  23. Shen, F.; Luo, W.; Dai, J. Q.; Yao, Y. G.; Zhu, M. W.; Hitz, E.; Tang, Y. F.; Chen, Y. F.; Sprenkle, V. L.; Li, X. L. et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600377.

    Article  Google Scholar 

  24. Jin, C. B.; Sheng, O. W.; Luo, J. M.; Yuan, H. D.; Fang, C.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C. et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 2017, 37, 177–186.

    Article  CAS  Google Scholar 

  25. Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004–11015.

    Article  CAS  Google Scholar 

  26. Yan, L. J.; Liu, J.; Wang, Q. Q.; Sun, M. H.; Jiang, Z. G.; Liang, C. D.; Pan, F.; Lin, Z. In situ wrapping Si nanoparticles with 2D carbon nanosheets as high-areal-capacity anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 38159–38164.

    Article  CAS  Google Scholar 

  27. Liu, N. T.; Mamat, X.; Jiang, R. Y.; Tong, W.; Huang, Y. D.; Jia, D. Z.; Li, Y. T.; Wang, L.; Wågberg, T.; Hu, G. Z. Facile high-voltage sputtering synthesis of three-dimensional hierarchical porous nitrogen-doped carbon coated Si composite for high performance lithium-ion batteries. Chem. Eng. J. 2018, 343, 78–85.

    Article  CAS  Google Scholar 

  28. Liu, D. H.; Li, W. H.; Zheng, Y. P.; Cui, Z.; Yan, X.; Liu, D. S.; Wang, J. W.; Zhang, Y.; Lü, H. Y.; Bai, F. Y. et al. In situ encapsulating α-MnS into N, S-codoped nanotube-like carbon as advanced anode material: α→β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv. Mater. 2018, 30, 1706317.

    Article  Google Scholar 

  29. Yin, B.; Cao, X. X.; Pan, A. Q.; Luo, Z. G.; Dinesh, S.; Lin, J. D.; Tang, Y.; Liang, S. Q.; Cao, G. Z. Encapsulation of CoSx nanocrystals into N/S Co-doped honeycomb-like 3D porous carbon for highperformance lithium storage. Adv. Sci. 2018, 5, 1800829.

    Article  Google Scholar 

  30. Zheng, M. B.; Tang, H.; Hu, Q.; Zheng, S. S.; Li, L. L.; Xu, J.; Pang, H. Tungsten-based materials for lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1707500.

    Article  Google Scholar 

  31. Lu, Y.; Wang, T. Y.; Li, X. R.; Zhang, G. X.; Xue, H. G.; Pang, H. Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Adv. 2016, 6, 87188–87212.

    Article  CAS  Google Scholar 

  32. Xie, J.; Wang, J. Y.; Lee, H. R.; Yan, K.; Li, Y. Z.; Shi, F. F.; Huang, W.; Pei, A.; Chen, G.; Subbaraman, R. et al. Engineering stable interfaces for three-dimensional lithium metal anodes. Sci. Adv. 2018, 4, eaat5168.

    Article  CAS  Google Scholar 

  33. Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

    Article  CAS  Google Scholar 

  34. Javed, M.; Saqib, A. N. S.; Ata-ur-Rehman; Ali, B.; Faizan, M.; Anang, D. A.; Iqbal, Z.; Abbas, S. M. Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. Electrochim. Acta 2019, 297, 250–257.

    Article  CAS  Google Scholar 

  35. Jing, M. J.; Wang, J. F.; Hou, H. S.; Yang, Y. C.; Zhang, Y.; Pan, C. C.; Chen, J.; Zhu, Y. R.; Ji, X. B. Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 16824–16830.

    Article  CAS  Google Scholar 

  36. Hoang, V. C.; Dave, K.; Gomes, V. G. Carbon quantum dot-based composites for energy storage and electrocatalysis: Mechanism, applications and future prospects. Nano Energy 2019, 66, 104093.

    Article  CAS  Google Scholar 

  37. Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

    Article  CAS  Google Scholar 

  38. Etacheri, V.; Wang, C. W.; O’Connell, M. J.; Chan, C. K.; Pol, V. G. Porous carbon sphere anodes for enhanced lithium-ion storage. J. Mater. Chem. A 2015, 3, 9861–9868.

    Article  CAS  Google Scholar 

  39. Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

    Article  CAS  Google Scholar 

  40. Chen, W. M.; Wan, M.; Liu, Q.; Xiong, X. Q.; Yu, F. Q.; Huang, Y. H. Heteroatom-doped carbon materials: Synthesis, mechanism, and application for sodium-ion batteries. Small Methods 2019, 3, 1800323.

    Article  CAS  Google Scholar 

  41. Ye, W. B.; Pei, F.; Lan, X. N.; Cheng, Y.; Fang, X. L.; Zhang, Q. F.; Zheng, N. F.; Peng, D. L.; Wang, M. S. Stable nano-encapsulation of lithium through seed-free selective deposition for high-performance Li battery anodes. Adv. Energy Mater. 2020, 10, 1902956.

    Article  CAS  Google Scholar 

  42. Zhou, X. S.; Yu, L.; Yu, X. Y.; Lou, X. W. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv. Energy Mater. 2016, 6, 1601177.

    Article  Google Scholar 

  43. Jiang, W. W.; Liu, Q. H.; Peng, J. F.; Jiang, Y. H.; Ding, Y. H.; Wei, Q. Co9S8 nanoparticles embedded into amorphous carbon as anode materials for lithium-ion batteries. Nanotechnology 2020, 31, 235713.

    Article  CAS  Google Scholar 

  44. Xie, W. H.; Li, S. Y.; Wang, S. Y.; Xue, S.; Liu, Z. J.; Jiang, X. Y.; He, D. Y. N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers as a binder-free self-supported electrode for lithium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 20334–20339.

    Article  CAS  Google Scholar 

  45. Wang, H.; Tong, Z. Q.; Yang, R.; Huang, Z. M.; Shen, D.; Jiao, T. P.; Cui, X.; Zhang, W. J.; Jiang, Y.; Lee, C. S. Electrochemically stable sodium metal-tellurium/carbon nanorods batteries. Adv. Energy Mater. 2019, 9, 1903046.

    Article  CAS  Google Scholar 

  46. Huang, S. Y.; Tang, L.; Najafabadi, H. S.; Chen, S.; Ren, Z. F. A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries. Nano Energy 2017, 38, 504–509.

    Article  CAS  Google Scholar 

  47. Li, X. Y.; Chen, W. C.; Qian, Q. R.; Huang, H. T.; Chen, Y. M.; Wang, Z. Q.; Chen, Q. H.; Yang, J.; Li, J.; Mai, Y. W. Electrospinning-based strategies for battery materials. Adv. Energy Mater. 2021, 11, 2000845.

    Article  CAS  Google Scholar 

  48. Chen, Y. M.; Lu, Z. G.; Zhou, L. M.; Mai, Y. W.; Huang, H. T. Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries. Energy Environ. Sci. 2012, 5, 7898–7902.

    Article  CAS  Google Scholar 

  49. Ye, X. C.; Lin, Z. H.; Liang, S. J.; Huang, X. H.; Qiu, X. Y.; Qiu, Y. C.; Liu, X. M.; Xie, D.; Deng, H.; Xiong, X. H. et al. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett. 2019, 19, 1860–1866.

    Article  CAS  Google Scholar 

  50. Chen, M.; Zheng, J. H.; Sheng, O. W.; Jin, C. B.; Yuan, H. D.; Liu, T. F.; Liu, Y. J.; Wang, Y.; Nai, J. W.; Tao, X. Y. Sulfur-nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. J. Mater. Chem. A 2019, 7, 18267–18274.

    Article  CAS  Google Scholar 

  51. Song, R. R.; Song, H. H.; Zhou, J. S.; Chen, X. H.; Wu, B.; Yang, H. Y. Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries. J. Mater. Chem. 2012, 22, 12369–12374.

    Article  CAS  Google Scholar 

  52. Guo, W.; Li, X.; Xu, J. T.; Liu, H. K.; Ma, J. M.; Dou, S. X. Growth of highly nitrogen-doped amorphous carbon for lithium-ion battery anode. Electrochim. Acta 2016, 155, 414–420.

    Article  Google Scholar 

  53. Yang, J. Q.; Zhou, X. L.; Wu, D. H.; Zhao, X. D.; Zhou, Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 2017, 29, 1604108.

    Article  Google Scholar 

  54. Wang, Y. X.; Tian, W.; Wang, L. H.; Zhang, H. R.; Liu, J. L.; Peng, T. Y.; Pan, L.; Wang, X. B.; Wu, M. B. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 5577–5585.

    Article  CAS  Google Scholar 

  55. Li, Y. M.; Xu, S. Y.; Wu, X. Y.; Yu, J. Z.; Wang, Y. S.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 71–77.

    Article  CAS  Google Scholar 

  56. Wang, Z. H.; Shen, D. K.; Wu, C. F.; Gu, S. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem. 2018, 20, 5031–5057.

    Article  CAS  Google Scholar 

  57. Wang, Y. L.; Qu, Q. L.; Gao, S. T.; Tang, G. S.; Liu, K. M.; He, S. J.; Huang, C. B. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 2019, 155, 706–726.

    Article  CAS  Google Scholar 

  58. Xu, S. D.; Zhao, Y.; Liu, S. B.; Ren, X. X.; Chen, L.; Shi, W. J.; Wang, X. M.; Zhang, D. Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries. J. Mater. Sci. 2018, 53, 12334–12351.

    Article  CAS  Google Scholar 

  59. Yuan, H. D.; Liu, T. F.; Liu, Y. J.; Nai, J. W.; Wang, Y.; Zhang, W. K.; Tao, X. Y. A review of biomass materials for advanced lithium-sulfur batteries. Chem. Sci. 2019, 10, 7484–7495.

    Article  CAS  Google Scholar 

  60. Li, Q.; He, T.; Zhang, Y. Q.; Wu, H. Q.; Liu, J. J.; Qi, Y. J.; Lei, Y. P.; Chen, H.; Sun, Z. F.; Peng, C. et al. Biomass waste-derived 3D metalfree porous carbon as a bifunctional electrocatalyst for rechargeable zinc-air batteries. ACS Sustainable Chem. Eng. 2019, 7, 17039–17046.

    Article  CAS  Google Scholar 

  61. Jing, S. Y.; Zhang, Y. L.; Chen, F.; Liang, H. G.; Yin, S. B.; Tsiakaras, P. Novel and highly efficient cathodes for Li-O2 batteries: 3D self-standing NiFe@NC-functionalized N-doped carbon nanonet derived from Prussian blue analogues/biomass composites. Appl. Catal. B Environ. 2019, 245, 721–732.

    Article  CAS  Google Scholar 

  62. Li, H. B.; Shen, F.; Luo, W.; Dai, J. Q.; Han, X. G.; Chen, Y. N.; Yao, Y. G.; Zhu, H. L.; Fu, K.; Hitz, E. et al. Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery. ACS Appl. Mater. Interfaces 2016, 8, 2204–2210.

    Article  CAS  Google Scholar 

  63. Qiu, D. P.; Kang, C. H.; Li, M.; Wei, J. Y.; Hou, Z. W.; Wang, F.; Yang, R. Biomass-derived mesopore-dominant hierarchical porous carbon enabling ultra-efficient lithium ion storage. Carbon 2020, 162, 595–603.

    Article  CAS  Google Scholar 

  64. Jiang, Z. L.; Sun, H.; Shi, W. K.; Cheng, J. Y.; Hu, J. Y.; Guo, H. L.; Gao, M. Y.; Zhou, H. J.; Sun, S. G. P-doped hive-like carbon derived from pinecone biomass as efficient catalyst for Li-O2 battery. ACS Sustainable Chem. Eng. 2019, 7, 14161–14169.

    Article  CAS  Google Scholar 

  65. Liu, Y. H.; Yu, X. Y.; Fang, Y. J.; Zhu, X. S.; Bao, J. C.; Zhou, X. S.; Lou, X. W. Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2018, 2, 725–735.

    Article  CAS  Google Scholar 

  66. Wang, Z. Y.; Wang, Z. C.; Liu, W. T.; Xiao, W.; Lou, X. W. Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci. 2013, 6, 87–91.

    Article  CAS  Google Scholar 

  67. Zhu, D. M.; Liu, H. Q.; Tai, L. X.; Zhang, X. N.; Jiang, S.; Yang, S. M.; Yi, L.; Wen, W.; Li, X. L. Facile construction of novel 3-dimensional graphene/amorphous porous carbon hybrids with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 2017, 9, 35191–35199.

    Article  CAS  Google Scholar 

  68. Hong, W. W.; Ge, P.; Jiang, Y. L.; Yang, L.; Tian, Y.; Zou, G. Q.; Cao, X. Y.; Hou, H. S.; Ji, X. B. Yolk-shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl. Mater. Interfaces 2019, 11, 10829–10840.

    Article  CAS  Google Scholar 

  69. Yun, Y. S.; Jin, H. J. Electrochemical performance of heteroatom-enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries. Mater. Lett. 2013, 108, 311–315.

    Article  CAS  Google Scholar 

  70. Li, C. F.; Li, Z. P.; Ye, X. J.; Yang, X. Q.; Zhang, G. Q.; Li, Z. H. Crosslinking-induced spontaneous growth: A novel strategy for synthesizing sandwich-type graphene@Fe3O4 dots/amorphous carbon with high lithium storage performance. Chem. Eng. J. 2018, 334, 1614–1620.

    Article  CAS  Google Scholar 

  71. Li, S. Y.; Liu, Y. Y.; Guo, P. S.; Wang, C. X. Self-climbed amorphous carbon nanotubes filled with transition metal oxide nanoparticles for large rate and long lifespan anode materials in lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 26818–26825.

    Article  CAS  Google Scholar 

  72. Yang, G. J.; Li, X. Y.; Guan, Z.; Tong, Y. X.; Xu, B.; Wang, X. F.; Wang, Z. X.; Chen, L. Q. Insights into lithium and sodium storage in porous carbon. Nano Lett. 2020, 20, 3836–3843.

    Article  CAS  Google Scholar 

  73. Zhang, Y. Z.; Chen, L.; Meng, Y.; Xie, J.; Guo, Y.; Xiao, D. Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. J. Power Sources 2016, 335, 20–30.

    Article  CAS  Google Scholar 

  74. Jiang, S. X.; Chen, M. F.; Wang, X. Y.; Zhang, Y.; Huang, C.; Zhang, Y. P.; Wang, Y. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem. Eng. J. 2019, 355, 478–486.

    Article  CAS  Google Scholar 

  75. Chen, X.; Chen, X. R.; Hou, T. Z.; Li, B. Q.; Cheng, X. B.; Zhang, R.; Zhang, Q. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 2019, 5, eaau7728.

    Article  CAS  Google Scholar 

  76. Yang, W.; Yang, W.; Zhang, F.; Wang, G. X.; Shao, G. J. Hierarchical interconnected expanded graphitic ribbons embedded with amorphous carbon: An advanced carbon nanostructure for superior lithium and sodium storage. Small 2018, 14, 1802221.

    Article  Google Scholar 

  77. Jeong, S.; Li, X. L.; Zheng, J. M.; Yan, P. F.; Cao, R. G.; Jung, H. J.; Wang, C. M.; Liu, J.; Zhang, J. G. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries. J. Power Sources 2016, 329, 323–329.

    Article  CAS  Google Scholar 

  78. Haro, M.; Singh, V.; Steinhauer, S.; Toulkeridou, E.; Grammatikopoulos, P.; Sowwan, M. Nanoscale heterogeneity of multilayered Si anodes with embedded nanoparticle scaffolds for Li-ion batteries. Adv. Sci. 2017, 4, 1700180.

    Article  Google Scholar 

  79. Zhang, B. C.; Wang, H.; He, L.; Zheng, C. J.; Jie, J. S.; Lifshitz, Y.; Lee, S. T.; Zhang, X. H. Centimeter-long single-crystalline Si nanowires. Nano Lett. 2017, 17, 7323–7329.

    Article  CAS  Google Scholar 

  80. Liu, R. P.; Shen, C.; Dong, Y.; Qin, J. L.; Wang, Q.; Iocozzia, J.; Zhao, S. Q.; Yuan, K. J.; Han, C. P.; Li, B. H. et al. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 14797–14804.

    Article  CAS  Google Scholar 

  81. Zhang, H.; Zhang, X. F.; Jin, H.; Zong, P.; Bai, Y.; Lian, K.; Xu, H.; Ma, F. A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes. Chem. Eng. J. 2019, 360, 974–981.

    Article  CAS  Google Scholar 

  82. Fan, P.; Mu, T. S.; Lou, S. F.; Cheng, X. Q.; Gao, Y. Z.; Du, C. Y.; Zuo, P. J.; Ma, Y. L.; Yin, G. P. Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries. Electrochim. Acta 2019, 306, 590–598.

    Article  CAS  Google Scholar 

  83. Zheng, M. B.; Tang, H.; Li, L. L.; Hu, Q.; Zhang, L.; Xue, H. G.; Pang, H. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv. Sci. 2018, 5, 1700592.

    Article  Google Scholar 

  84. Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485.

    Article  CAS  Google Scholar 

  85. Tian, J. Y.; Shao, Q.; Dong, X. J.; Zheng, J. L.; Pan, D.; Zhang, X. Y.; Cao, H. L.; Hao, L. H.; Liu, J. R.; Mai, X. M. et al. Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance. Electrochim. Acta 2018, 261, 236–245.

    Article  CAS  Google Scholar 

  86. Wu, H. Y.; Qin, M. L.; Wang, W.; Cao, Z.; Liu, Z. Q.; Yu, Q. Y.; Lao, C. Y.; Zhang, D. Y.; Jia, B. R.; He, D. L. et al. Ultrafast synthesis of amorphous VOx embedded into 3D strutted amorphous carbon frameworks-short-range order in dual-amorphous composites boosts lithium storage. J. Mater. Chem. A 2018, 6, 7053–7061.

    Article  CAS  Google Scholar 

  87. Zhang, Q. B.; Liao, J.; Liao, M.; Dai, J. Y.; Ge, H. L.; Duan, T.; Yao, W. T. One-dimensional Fe7S8@C nanorods as anode materials for high-rate and long-life lithium-ion batteries. Appl. Surf. Sci. 2019, 473, 799–806.

    Article  CAS  Google Scholar 

  88. Fernando, J. F. S.; Zhang, C.; Firestein, K. L.; Nerkar, J. Y.; Golberg, D. V. ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries. J. Mater. Chem. A 2019, 7, 8460–8471.

    Article  CAS  Google Scholar 

  89. Wang, J. G.; Liu, H. Y.; Zhou, R.; Liu, X. R.; Wei, B. Q. Onion-like nanospheres organized by carbon encapsulated few-layer MoS2 nanosheets with enhanced lithium storage performance. J. Power Sources 2019, 413, 327–333.

    Article  CAS  Google Scholar 

  90. Zhang, B. L.; Shi, H. D.; Ju, Z. J.; Huang, K.; Lian, C.; Wang, Y.; Sheng, O. W.; Zheng, J. H.; Nai, J. W.; Liu, T. F. et al. Arrayed silk fibroin for high-performance Li metal batteries and atomic interface structure revealed by cryo-TEM. J. Mater. Chem. A 2020, 8, 26045–26054.

    Article  CAS  Google Scholar 

  91. Jeong, B. O.; Jeong, S. H.; Park, M. S.; Kim, S.; Jung, Y. Synthesis of amorphous carbon materials for lithium secondary batteries. J. Nanosci. Nanotechnol. 2014, 14, 7788–7792.

    Article  CAS  Google Scholar 

  92. Dong, Q. Y.; Hong, B.; Fan, H. L.; Jiang, H.; Zhang, K.; Lai, Y. Q. Inducing the formation of in situ Li3N-rich SEI via nanocomposite plating of Mg3N2 with lithium enables high-performance 3D lithium-metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 627–636.

    Article  CAS  Google Scholar 

  93. Ju, Z. J.; Jin, C. B.; Yuan, H. D.; Yang, T.; Sheng, O. W.; Liu, T. F.; Liu, Y. J.; Wang, Y.; Ma, F. Y.; Zhang, W. K.; Nai, J. W. et al. A fast-ion conducting interface enabled by aluminum silicate fibers for stable Li metal batteries. Chem. Eng. J. 2021, 408, 128016.

    Article  CAS  Google Scholar 

  94. Liu, S. F.; Xia, X. H.; Zhong, Y.; Deng, S. J.; Yao, Z. J.; Zhang, L. Y.; Cheng, X. B.; Wang, X. L.; Zhang, Q.; Tu, J. P. 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode. Adv. Energy Mater. 2018, 5, 1702322.

    Article  Google Scholar 

  95. Wang, C. H.; Bai, G. L.; Yang, Y. F.; Liu, X. J.; Shao, H. X. Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 2019, 12, 217–223.

    Article  CAS  Google Scholar 

  96. Wang, Z. J.; Yang, K.; Song, Y. L.; Lin, H.; Li, K.; Cui, Y. H.; Yang, L. Y.; Pan, F. Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries. Nano Res. 2020, 13, 2431–2437.

    Article  CAS  Google Scholar 

  97. Liu, T. F.; Zheng, J. L.; Hu, H. L.; Sheng, O. W.; Ju, Z. J.; Lu, G. X.; Liu, Y. J.; Nai, J. W.; Wang, Y.; Zhang, W. K. et al. In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries. J. Energy Chem. 2021, 55, 272–278.

    Article  Google Scholar 

  98. Chen, S. R.; Zheng, J. M.; Yu, L.; Ren, X. D.; Engelhard, M. H.; Niu, C. J.; Lee, H.; Xu, W.; Xiao, J.; Liu, J. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2, 1548–1558.

    Article  CAS  Google Scholar 

  99. Han, B.; Feng, D. Y.; Li, S.; Zhang, Z.; Zou, Y. C.; Gu, M.; Meng, H.; Wang, C. Y.; Xu, K.; Zhao, Y. S. et al. Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries. Nano Lett. 2020, 20, 4029–4037.

    Article  CAS  Google Scholar 

  100. Wang, R.; Yu, J.; Tang, J. T.; Meng, R. J.; Nazar, L. F.; Huang, L. Z.; Liang, X. Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Storage Mater. 2020, 32, 178–184.

    Article  CAS  Google Scholar 

  101. Ma, L.; Kim, M. S.; Archer, L. A. Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 2017, 29, 4181–4189.

    Article  CAS  Google Scholar 

  102. Zhong, Y. C.; Chen, Y. M.; Cheng, Y. F.; Fan, Q. L.; Zhao, H. J.; Shao, H. Y.; Lai, Y. Q.; Shi, Z. C.; Ke, X.; Guo, Z. P. Li alginate-based artificial SEI layer for stable lithium metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 37726–37731.

    Article  CAS  Google Scholar 

  103. Yan, K.; Lee, H. W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016–6022.

    Article  CAS  Google Scholar 

  104. Kim, J. S.; Kim, D. W.; Jung, H. T.; Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 2015, 27, 2780–2787.

    Article  CAS  Google Scholar 

  105. Yuan, H. D.; Nai, J. W.; Tian, H.; Ju, Z. J.; Zhang, W. K.; Liu, Y. J.; Tao, X. Y.; Lou, X. W. An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Sci. Adv. 2020, 6, eaaz3112.

    Article  CAS  Google Scholar 

  106. Zhang, F.; Liu, X. Y.; Yang, M. H.; Cao, X. Q.; Huang, X. Y.; Tian, Y.; Zhang, F.; Li, H. X. Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes. Nano Energy 2020, 69, 104443.

    Article  CAS  Google Scholar 

  107. Kang, C.; Lahiri, I.; Baskaran, R.; Kim, W. G.; Sun, Y. K.; Choi, W. 3-Dimensional carbon nanotube for Li-ion battery anode. J. Power Sources 2012, 219, 364–370.

    Article  CAS  Google Scholar 

  108. Wang, Q.; Yang, C. K.; Yang, J. J.; Wu, K.; Qi, L. Y.; Tang, H.; Zhang, Z. Y.; Liu, W.; Zhou, H. H. Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Mater. 2018, 15, 249–256.

    Article  Google Scholar 

  109. An, Y. L.; Tian, Y.; Li, Y.; Wei, C. L.; Tao, Y.; Liu, Y. P.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chem. Eng. J. 2020, 400, 125843.

    Article  CAS  Google Scholar 

  110. Wang, Z. Y.; Lu, Z. X.; Guo, W.; Luo, Q.; Yin, Y. H.; Liu, X. B.; Li, Y. S.; Xia, B. Y.; Wu, Z. P. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries. Adv. Mater. 2021, 33, 2006702.

    Article  CAS  Google Scholar 

  111. Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

    Article  CAS  Google Scholar 

  112. Liu, L.; Yin, Y. X.; Li, J. Y.; Li, N. W.; Zeng, X. X.; Ye, H.; Guo, Y. C.; Wan, L. J. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule 2017, 1, 563–575.

    Article  CAS  Google Scholar 

  113. Kang, H. K.; Woo, S. G.; Kim, J. H.; Lee, S. R.; Kim, Y. J. Conductive porous carbon film as a lithium metal storage medium. Electrochim. Acta 2015, 176, 172–178.

    Article  CAS  Google Scholar 

  114. Lan, X. N.; Ye, W. B.; Zheng, H. F.; Cheng, Y.; Zhang, Q. B.; Peng, D. L.; Wang, M. S. Encapsulating lithium and sodium inside amorphous carbon nanotubes through gold-seeded growth. Nano Energy 2019, 66, 104178.

    Article  CAS  Google Scholar 

  115. Derenskyi, V.; Gomulya, W.; Talsma, W.; Salazar-Rios, J. M.; Fritsch, M.; Nirmalraj, P.; Riel, H.; Allard, S.; Scherf, U.; Loi, M. A. On-chip chemical self-assembly of semiconducting single-walled carbon nanotubes (SWNTs): Toward robust and scale invariant SWNTs transistors. Adv. Mater. 2017, 29, 1606757.

    Article  Google Scholar 

  116. Sheng, O. W.; Zheng, J. H.; Ju, Z. J.; Jin, C. B.; Wang, Y.; Chen, M.; Nai, J. W.; Liu, T. F.; Zhang, W. K.; Liu, Y. J. et al. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM. Adv. Mater. 2020, 32, 2000223.

    Article  CAS  Google Scholar 

  117. Li, Y. Z.; Li, Y. B.; Pei, A.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506–510.

    Article  CAS  Google Scholar 

  118. Zhao, L. Z.; Wu, H. H.; Yang, C. H.; Zhang, Q. B.; Zhong, G. M.; Zheng, Z. M.; Chen, H. X.; Wang, J. M.; He, K.; Wang, B. L. et al. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano 2018, 12, 12597–12611.

    Article  CAS  Google Scholar 

  119. Tao, L.; Huang, Y. B.; Yang, X. Q.; Zheng, Y. W.; Liu, C.; Di, M. W.; Zheng, Z. F. Flexible anode materials for lithium-ion batteries derived from waste biomass-based carbon nanofibers: I. Effect of carbonization temperature. RSC Adv. 2018, 5, 7102–7109.

    Article  Google Scholar 

  120. Chen, F.; Yu, C. P.; Cui, J. W.; Yu, D. B.; Song, P.; Wang, Y.; Qin, Y. Q.; Yan, J.; Wu, Y. C. A core-shell structured metal-organic frameworks-derived porous carbon nanowires as a superior anode for alkaline metal-ion batteries. Appl. Surf. Sci. 2021, 541, 148473.

    Article  CAS  Google Scholar 

  121. Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.

    Article  CAS  Google Scholar 

  122. Wang, S. B.; Xiao, C. L.; Xing, Y. L.; Xu, H. Z.; Zhang, S. C. Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries. J. Mater. Chem. A 2015, 3, 6742–6746.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (No. 2020R01002), the National Natural Science Foundation of China (Nos. 21902144, 51722210, 51972285, and U1802254), and the Natural Science Foundation of Zhejiang Province (Nos. LY17E020010 and LD18E020003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyong Tao or Lin Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nai, J., Zhao, X., Yuan, H. et al. Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries. Nano Res. 14, 2053–2066 (2021). https://doi.org/10.1007/s12274-021-3506-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3506-9

Keywords

Navigation