Skip to main content
Log in

Applications of single-atom catalysts

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owning to unsaturated coordination environment, quantum size effect and metal-support interaction, single- or dual-atom metal sites, such as Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Rh, Pd, Ag, Sn, Ir, Pt, Au, Bi, and Er coordinated with nonmetallic elements such as O, N, P, and S, exhibit different electronic configurations, which endow them with high catalytic performances in multiple redox reactions and versatile applications in organic synthesis, environmental remediation, energy conversion, and biomedicine. Despite intense research, the relation of structure-activity for single-atom catalysts (SACs) still bedazzles researchers, since diversified configurations of active sites would bring about difficulty in structural identification and theoretical simulations. Here, recent results on the applications of SACs are reviewed with an emphasis on identifying the active sites and discussing the relation between structure and property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018, 1, 656–665.

    Article  Google Scholar 

  2. Yousefi, N.; Lu, X. L.; Elimelech, M.; Tufenkji, N. Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 2019, 14, 107–119.

    Article  CAS  Google Scholar 

  3. Yang, B. W.; Chen, Y.; Shi, J. L. Nanocatalytic medicine. Adv. Mater. 2019, 31, 1901778.

    Article  Google Scholar 

  4. Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

    Article  CAS  Google Scholar 

  5. Huang, C. H.; Dong, J. C.; Sun, W. M.; Xue, Z. J.; Ma, J.; Zheng, L. R.; Liu, C.; Li, X.; Zhou, K.; Qiao, X. Z. et al. Coordination mode engineering in stacked-nanosheet metal-organic frameworks to enhance catalytic reactivity and structural robustness. Nat. Commun. 2019, 10, 2779.

    Article  Google Scholar 

  6. Sudarsanam, P.; Zhong, R. Y.; van den Bosch, S.; Coman, S. M.; Parvulescu, V. I.; Sels, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 2018, 47, 8349–8402.

    Article  CAS  Google Scholar 

  7. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    Article  CAS  Google Scholar 

  8. Zhang, Y.; Wang, F. M.; Liu, C. Q.; Wang, Z. Z.; Kang, L. H.; Huang, Y. Y.; Dong, K.; Ren, J. S.; Qu, X. G. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 2018, 12, 651–661.

    Article  CAS  Google Scholar 

  9. Zhang, C.; Ni, D. L.; Liu, Y. Y.; Yao, H. L.; Bu, W. B.; Shi, J. L. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol. 2017, 12, 378–386.

    Article  CAS  Google Scholar 

  10. Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

    Article  Google Scholar 

  11. Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101–2106.

    Article  CAS  Google Scholar 

  12. Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 59, 2565–2576.

    Article  CAS  Google Scholar 

  13. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  CAS  Google Scholar 

  14. Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

    Article  CAS  Google Scholar 

  15. Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 1995, 378, 159–162.

    Article  CAS  Google Scholar 

  16. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  17. Chen, Z. W.; Chen, L. X.; Yang, C. C.; Jiang, Q. Atomic (single, double, and triple atoms) catalysis: Frontiers, opportunities, and challenges. J. Mater. Chem. A 2019, 7, 3492–3515.

    Article  CAS  Google Scholar 

  18. Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

    Article  CAS  Google Scholar 

  19. Li, C. Single Co atom catalyst stabilized in C/N containing matrix. Chin. J. Catal. 2016, 37, 1443–1445.

    Article  CAS  Google Scholar 

  20. Wang, B. W.; Wang, X. X.; Zou, J. X.; Yan, Y. C.; Xie, S. H.; Hu, G. Z.; Li, Y. G.; Dong, A. G. Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction. Nano Lett. 2017, 17, 2003–2009.

    Article  CAS  Google Scholar 

  21. Xiong, Y.; Wang, S. B.; Chen, W. X.; Zhang, J.; Li, Q. H.; Hu, H. S.; Zheng, L. R.; Yan, W. S.; Gu, L.; Wang, D. S. et al. Construction of dual-active-site copper catalyst containing both Cu-N3 and Cu-N4 sites. Small 2021, 17, 2006834.

    Article  CAS  Google Scholar 

  22. Zhang, L. L.; Ren, Y. J.; Liu, W. G.; Wang, A. Q.; Zhang, T. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653–672.

    Article  CAS  Google Scholar 

  23. Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

    Article  CAS  Google Scholar 

  24. Zhang, H. B.; Lu, X. F.; Wu, Z. P.; Lou, X. W. D. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 2020, 6, 1288–1301.

    Article  CAS  Google Scholar 

  25. Xiang, H. J.; Feng, W.; Chen, Y. Single-atom catalysts in catalytic biomedicine. Adv. Mater. 2020, 32, 1905994.

    Article  CAS  Google Scholar 

  26. Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2020, 33, 2000381.

    Article  Google Scholar 

  27. Yan, H.; Su, C. L.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 2018, 6, 8793–8814.

    Article  CAS  Google Scholar 

  28. Liu, J. Y. Single-atom catalysis for a sustainable and greener future. Curr. Opin. Green Sust. Chem. 2020, 22, 54–64.

    Google Scholar 

  29. Gao, Z. Y.; Xu, S. P.; Li, L. L.; Yan, G.; Yang, W. J.; Wu, C. C.; Gates, I. D. On the adsorption of elemental mercury on single-atom TM (TM = V, Cr, Mn, Co) decorated graphene substrates. Appl. Surf. Sci. 2020, 516, 146037.

    Article  CAS  Google Scholar 

  30. Wang, Q. S.; Zhang, D. F.; Chen, Y.; Fu, W. F.; Lv, X. J. Singleatom catalysts for photocatalytic reactions. ACS Sustainable Chem. Eng. 2019, 7, 6430–6443.

    Article  CAS  Google Scholar 

  31. Yilmaz, G.; Peh, S. B.; Zhao, D.; Ho, G. W. Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv. Sci. 2019, 6, 1901129.

    Article  CAS  Google Scholar 

  32. Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

    Article  Google Scholar 

  33. Yan, X.; Liu, D. L.; Cao, H. H.; Hou, F.; Liang, J.; Dou, S. X. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods 2019, 3, 1800501.

    Article  Google Scholar 

  34. Zhang, W. M.; Liu, Y. Q.; Zhang, L. P.; Chen, J. Recent advances in isolated single-atom catalysts for zinc air batteries: A focus review. Nanomaterials 2019, 9, 1402.

    Article  CAS  Google Scholar 

  35. Bai, L.; Duan, Z. Y.; Wen, X. D.; Si, R.; Guan, J. Q. Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Appl. Catal. B 2019, 257, 117930.

    Article  CAS  Google Scholar 

  36. Bai, L.; Duan, Z. Y.; Wen, X. D.; Si, R.; Zhang, Q. Q.; Guan, J. Q. Highly dispersed ruthenium-based multifunctional electrocatalyst. ACS Catal. 2019, 9, 9897–9904.

    Article  CAS  Google Scholar 

  37. Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

    Article  CAS  Google Scholar 

  38. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  39. Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M. Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.

    Article  CAS  Google Scholar 

  40. Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

    Article  CAS  Google Scholar 

  41. Thomas, J. M. The concept, reality and utility of single-site heterogeneous catalysts (SSHCs). Phys. Chem. Chem. Phys. 2014, 16, 7647–7661.

    Article  CAS  Google Scholar 

  42. Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

    Article  CAS  Google Scholar 

  43. Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

    Article  CAS  Google Scholar 

  44. Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.

    Article  Google Scholar 

  45. Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

    Article  CAS  Google Scholar 

  46. Moliner, M.; Gabay, J. E.; Kliewer, C. E.; Carr, R. T.; Guzman, J.; Casty, G. L.; Serna, P.; Corma, A. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 2016, 138, 15743–15750.

    Article  CAS  Google Scholar 

  47. Wei, H. H.; Wu, H. B.; Huang, K.; Ge, B. H.; Ma, J. Y.; Lang, J. L.; Zu, D.; Lei, M.; Yao, Y. G.; Guo, W. et al. Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction. Chem. Sci. 2019, 10, 2830–2836.

    Article  CAS  Google Scholar 

  48. Wei, H. H.; Huang, K.; Wang, D.; Zhang, R. Y.; Ge, B. H.; Ma, J. Y.; Wen, B.; Zhang, S.; Li, Q. Y.; Lei, M. et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 2017, 8, 1490.

    Article  Google Scholar 

  49. Lu, J. L.; Elam, J. W.; Stair, P. C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc. Chem. Res. 2013, 46, 1806–1815.

    Article  CAS  Google Scholar 

  50. Detavernier, C.; Dendooven, J.; Pulinthanathu Sree, S.; Ludwig, K. F.; Martens, J. A. Tailoring nanoporous materials by atomic layer deposition. Chem. Soc. Rev. 2011, 40, 5242–5253.

    Article  CAS  Google Scholar 

  51. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

    Article  CAS  Google Scholar 

  52. Lucci, F. R.; Darby, M. T.; Mattera, M. F. G.; Ivimey, C. J.; Therrien, A. J.; Michaelides, A.; Stamatakis, M.; Sykes, E. C. H. Controlling hydrogen activation, spillover, and desorption with Pd-Au singleatom alloys. J. Phys. Chem. Lett. 2016, 7, 480–485.

    Article  CAS  Google Scholar 

  53. Marcinkowski, M. D.; Darby, M. T.; Liu, J. L.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. Nat. Chem. 2018, 10, 325–332.

    Article  CAS  Google Scholar 

  54. Lucci, F. R.; Liu, J. L.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 2015, 6, 8550.

    Article  Google Scholar 

  55. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

    Article  CAS  Google Scholar 

  56. Ge, J. J.; Li, Z. J.; Hong, X.; Li, Y. D. Surface atomic regulation of core-shell noble metal catalysts. Chem.-Eur. J. 2019, 25, 5113–5127.

    Article  CAS  Google Scholar 

  57. Zhou, M.; Dick, J. E.; Bard, A. J. Electrodeposition of isolated platinum atoms and clusters on bismuth—characterization and electrocatalysis. J. Am. Chem. Soc. 2017, 139, 17677–17682.

    Article  CAS  Google Scholar 

  58. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

    Article  CAS  Google Scholar 

  59. Xuan, N. N.; Chen, J. H.; Shi, J. J.; Yue, Y. W.; Zhuang, P. Y.; Ba, K.; Sun, Y. Y.; Shen, J. F.; Liu, Y. Y.; Ge, B. H. et al. Single-atom electroplating on two dimensional materials. Chem. Mater. 2019, 31, 429–435.

    Article  CAS  Google Scholar 

  60. Wang, D. W.; Li, Q.; Han, C.; Xing, Z. C.; Yang, X. R. Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Appl. Catal. B 2019, 249, 91–97.

    Article  CAS  Google Scholar 

  61. Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

    Article  Google Scholar 

  62. Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10, 1743.

    Article  Google Scholar 

  63. Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

    Article  CAS  Google Scholar 

  64. Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619.

    Article  CAS  Google Scholar 

  65. Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.

    Article  Google Scholar 

  66. Chen, X. Q.; Yu, L.; Wang, S.; Deng, D. H.; Bao, X. H. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 2017, 32, 353–358.

    Article  CAS  Google Scholar 

  67. Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938–996.

    Article  CAS  Google Scholar 

  68. Wu, Y. E.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt-Ni: An ideal trimetallic nanoframe catalyst. J. Am. Chem. Soc. 2014, 136, 11594–11597.

    Article  CAS  Google Scholar 

  69. Zhang, M. L.; Wang, Y. G.; Chen, W. X.; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S. et al. Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. J. Am. Chem. Soc. 2017, 139, 10976–10979.

    Article  CAS  Google Scholar 

  70. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  CAS  Google Scholar 

  71. Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

    Article  CAS  Google Scholar 

  72. Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795–9798.

    Article  CAS  Google Scholar 

  73. Cheng, Y.; Zhao, S. Y.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R. et al. Single-atom catalysts: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1870088.

    Article  Google Scholar 

  74. Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.

    Article  Google Scholar 

  75. Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

    Article  Google Scholar 

  76. Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

    Article  CAS  Google Scholar 

  77. Yang, L.; Shi, L.; Wang, D.; Lv, Y. L.; Cao, D. P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018, 50, 691–698.

    Article  CAS  Google Scholar 

  78. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  CAS  Google Scholar 

  79. Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.

    Article  CAS  Google Scholar 

  80. MacLaren, I.; Ramasse, Q. M. Aberration-corrected scanning transmission electron microscopy for atomic-resolution studies of functional oxides. Int. Mater. Rev. 2014, 59, 115–131.

    Article  CAS  Google Scholar 

  81. Liu, J. Y. Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: Probing the catalytically active centers. Chin. J. Catal. 2017, 38, 1460–1472.

    Article  CAS  Google Scholar 

  82. Oxley, M. P.; Lupini, A. R.; Pennycook, S. J. Ultra-high resolution electron microscopy. Rep. Prog. Phys. 2016, 80, 026101.

    Article  Google Scholar 

  83. Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

    Article  Google Scholar 

  84. Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

    Article  CAS  Google Scholar 

  85. Zhang, W. P.; Xu, S. T.; Han, X. W.; Bao, X. H. In situ solid-state NMR for heterogeneous catalysis: A joint experimental and theoretical approach. Chem. Soc. Rev. 2012, 41, 192–210.

    Article  CAS  Google Scholar 

  86. Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

    Article  CAS  Google Scholar 

  87. Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

    Article  CAS  Google Scholar 

  88. Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

    Article  Google Scholar 

  89. Thirumalai, H.; Kitchin, J. R. Investigating the reactivity of single atom alloys using density functional theory. Top. Catal. 2018, 61, 462–474.

    Article  CAS  Google Scholar 

  90. Duchesne, P. N.; Li, Z. Y.; Deming, C. P.; Fung, V.; Zhao, X. J.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S. W. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 2018, 17, 1033–1039.

    Article  CAS  Google Scholar 

  91. Peng, B. S.; Liu, H. T.; Liu, Z. Y.; Duan, X. F.; Huang, Y. Toward rational design of single-atom catalysts. J. Phys. Chem. Lett. 2021, 12, 2837–2847.

    Article  CAS  Google Scholar 

  92. Xi, J. B.; Jung, H. S.; Xu, Y.; Xiao, F.; Bae, J. W.; Wang, S. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008318.

    Article  CAS  Google Scholar 

  93. Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 2003, 36, 20–30.

    Article  CAS  Google Scholar 

  94. Yan, H.; Zhao, X. X.; Guo, N.; Lyu, Z.; Du, Y. H.; Xi, S. B.; Guo, R.; Chen, C.; Chen, Z. X.; Liu, W. et al. Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nat. Commun. 2018, 9, 3197.

    Article  Google Scholar 

  95. Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

    Article  CAS  Google Scholar 

  96. Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem., Int. Ed. 2016, 55, 8319–8323.

    Article  CAS  Google Scholar 

  97. Wei, H. S.; Ren, Y. J.; Wang, A. Q.; Liu, X. Y.; Liu, X.; Zhang, L. L.; Miao, S.; Li, L.; Liu, J. Y.; Wang, J. H. et al. Remarkable effect of alkalis on the chemoselective hydrogenation of functionalized nitroarenes over high-loading Pt/FeOx catalysts. Chem. Sci. 2017, 8, 5126–5131.

    Article  CAS  Google Scholar 

  98. Yan, X. L.; Duan, P.; Zhang, F. W.; Li, H.; Zhang, H. X.; Zhao, M.; Zhang, X. M.; Xu, B. S.; Pennycook, S. J.; Guo, J. J. Stable singleatom platinum catalyst trapped in carbon onion graphitic shells for improved chemoselective hydrogenation of nitroarenes. Carbon 2019, 143, 378–384.

    Article  CAS  Google Scholar 

  99. Sun, X. H.; Olivos-Suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20–28.

    Article  Google Scholar 

  100. Merino, E. Synthesis of azobenzenes: The coloured pieces of molecular materials. Chem. Soc. Rev. 2011, 40, 3835–3853.

    Article  CAS  Google Scholar 

  101. Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

    Article  CAS  Google Scholar 

  102. Liu, W. G.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764.

    Article  CAS  Google Scholar 

  103. Wang, L.; Guan, E. J.; Zhang, J.; Yang, J. H.; Zhu, Y. H.; Han, Y.; Yang, M.; Cen, C.; Fu, G.; Gates, B. C. et al. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. Nat. Commun. 2018, 9, 1362.

    Article  CAS  Google Scholar 

  104. Makosch, M.; Sá, J.; Kartusch, C.; Richner, G.; van Bokhoven, J. A.; Hungerbühler, K. Hydrogenation of nitrobenzene over Au/MeOx catalysts—A matter of the support. ChemCatChem 2012, 4, 59–63.

    Article  CAS  Google Scholar 

  105. Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

    Article  CAS  Google Scholar 

  106. Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

    Article  Google Scholar 

  107. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

    Article  CAS  Google Scholar 

  108. Wang, J.; Zhao, X. C.; Lei, N.; Li, L.; Zhang, L. L.; Xu, S. T.; Miao, S.; Pan, X. L.; Wang, A. Q.; Zhang, T. Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WOx-supported single/pseudo-single atom Pt catalyst. ChemSusChem 2016, 9, 784–790.

    Article  CAS  Google Scholar 

  109. Zhao, X. C.; Wang, J.; Yang, M.; Lei, N.; Li, L.; Hou, B. L.; Miao, S.; Pan, X. L.; Wang, A. Q.; Zhang, T. Selective hydrogenolysis of glycerol to 1,3-propanediol: Manipulating the frustrated lewis pairs by introducing gold to Pt/WOx. ChemSusChem 2017, 10, 819–824.

    Article  CAS  Google Scholar 

  110. Stephan, D. W. Frustrated lewis pairs: From concept to catalysis. Acc. Chem. Res. 2015, 48, 306–316.

    Article  CAS  Google Scholar 

  111. Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Gong, Y.; Liu, K. L.; Xu, C. F.; Zhao, Y.; Gu, L.; Fu, G.; Zheng, N. F. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 2020, 3, 703–709.

    Article  CAS  Google Scholar 

  112. Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816.

    Article  CAS  Google Scholar 

  113. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  114. Bao, X. H. Preface: Catalysis—key to a sustainable future. Natl. Sci. Rev. 2015, 2, 137.

    Article  Google Scholar 

  115. Hackett, S. F. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman, A. D.; Wilson, K.; Lee, A. F. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem., Int. Ed. 2007, 46, 8593–8596.

    Article  CAS  Google Scholar 

  116. Xie, S. H.; Tsunoyama, H.; Kurashige, W.; Negishi, Y.; Tsukuda, T. Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal. 2012, 2, 1519–1523.

    Article  CAS  Google Scholar 

  117. Li, T. B.; Liu, F.; Tang, Y.; Li, L.; Miao, S.; Su, Y.; Zhang, J. Y.; Huang, J. H.; Sun, H.; Haruta, M. et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew. Chem., Int. Ed. 2018, 57, 7795–7799.

    Article  CAS  Google Scholar 

  118. Xie, J. H.; Yin, K. H.; Serov, A.; Artyushkova, K.; Pham, H. N.; Sang, X. H.; Unocic, R. R.; Atanassov, P.; Datye, A. K.; Davis, R. J. Selective aerobic oxidation of alcohols over atomically-dispersed non-precious metal catalysts. ChemSusChem 2017, 10, 359–362.

    Article  CAS  Google Scholar 

  119. Li, M.; Wu, S. J.; Yang, X. Y.; Hu, J.; Peng, L.; Bai, L.; Huo, Q. S.; Guan, J. Q. Highly efficient single atom cobalt catalyst for selective oxidation of alcohols. Appl. Catal. A 2017, 543, 61–66.

    Article  CAS  Google Scholar 

  120. Huang, K. T.; Fu, H. Q.; Shi, W.; Wang, H. J.; Cao, Y. H.; Yang, G. X.; Peng, F.; Wang, Q.; Liu, Z. G.; Zhang, B. S. et al. Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co-N-C. J. Catal. 2019, 377, 283–292.

    Article  CAS  Google Scholar 

  121. Hu, P. P.; Huang, Z. W.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y. X.; Gu, X.; Tang, X. Electronic metal-support interactions in single-atom catalysts. Angew. Chem., Int. Ed. 2014, 53, 3418–3421.

    Article  CAS  Google Scholar 

  122. He, W. L.; Yang, X. L.; Zhao, M.; Wu, C. D. Suspending ionic singleatom catalysts in porphyrinic frameworks for highly efficient aerobic oxidation at room temperature. J. Catal. 2018, 358, 43–49.

    Article  CAS  Google Scholar 

  123. Song, G. Y.; Wang, F.; Li, X. W. C-C, C-O and C-N bond formation via rhodium(III)-catalyzed oxidative C-H activation. Chem. Soc. Rev. 2012, 41, 3651–3678.

    Article  CAS  Google Scholar 

  124. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-3244-4.

  125. Lee, M.; Ko, S.; Chang, S. Highly selective and practical hydrolytic oxidation of organosilanes to silanols catalyzed by a ruthenium complex. J. Am. Chem. Soc. 2000, 122, 12011–12012.

    Article  CAS  Google Scholar 

  126. Mitsudome, T.; Arita, S.; Mori, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Supported silver-nanoparticle-catalyzed highly efficient aqueous oxidation of phenylsilanes to silanols. Angew. Chem., Int. Ed. 2008, 47, 7938–7940.

    Article  CAS  Google Scholar 

  127. Chandrasekhar, V.; Boomishankar, R.; Nagendran, S. Recent developments in the synthesis and structure of organosilanols. Chem. Rev. 2004, 104, 5847–5910.

    Article  CAS  Google Scholar 

  128. Chen, Z.; Zhang, Q.; Chen, W. X.; Dong, J. C.; Yao, H. R.; Zhang, X. B.; Tong, X. J.; Wang, D. S.; Peng, Q.; Chen, C. et al. Single-site AuI catalyst for silane oxidation with water. Adv. Mater. 2018, 30, 1704720.

    Article  Google Scholar 

  129. Sharma, R. K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R. S.; Gawande, M. B. Fe3O4 (iron oxide)-supported nanocatalysts: Synthesis, characterization and applications in coupling reactions. Green Chem. 2016, 18, 3184–3209.

    Article  CAS  Google Scholar 

  130. Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

    Article  CAS  Google Scholar 

  131. Zhang, X. Y.; Sun, Z. C.; Wang, B.; Tang, Y.; Nguyen, L.; Li, Y. T.; Tao, F. F. C-C coupling on single-atom-based heterogeneous catalyst. J. Am. Chem. Soc. 2018, 140, 954–962.

    Article  CAS  Google Scholar 

  132. Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 2018, 13, 702–707.

    Article  CAS  Google Scholar 

  133. Liu, Y. Q.; Zhou, Y.; Li, J.; Wang, Q.; Qin, Q.; Zhang, W.; Asakura, H.; Yan, N.; Wang, J. Direct aerobic oxidative homocoupling of benzene to biphenyl over functional porous organic polymer supported atomically dispersed palladium catalyst. Appl. Catal. B 2017, 209, 679–688.

    Article  CAS  Google Scholar 

  134. Zhang, L. L.; Wang, A. Q.; Miller, J. T.; Liu, X. Y.; Yang, X. F.; Wang, W. T.; Li, L.; Huang, Y. Q.; Mou, C. Y.; Zhang, T. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water. ACS Catal. 2014, 4, 1546–1553.

    Article  CAS  Google Scholar 

  135. Zhang, L. L.; Wang, A. Q.; Wang, W. T.; Huang, Y. Q.; Liu, X. Y.; Miao, S.; Liu, J. Y.; Zhang, T. Co-N-C catalyst for C-C coupling Reactions: On the catalytic performance and active sites. ACS Catal. 2015, 5, 6563–6572.

    Article  CAS  Google Scholar 

  136. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  137. Cheng, Y.; Yang, S. Z.; Jiang, S. P.; Wang, S. Y. Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide. Small Methods 2019, 3, 1800440.

    Article  Google Scholar 

  138. Wang, B.; Cai, H. R.; Shen, S. H. Single metal atom photocatalysis. Small Methods 2019, 3, 1800447.

    Article  Google Scholar 

  139. Wang, Y. C.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q. G.; Chen, Z. Y.; Xiong, X.; Wang, D. S.; Lei, Y. P. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 2020, 13, 4609–4624.

    Article  CAS  Google Scholar 

  140. Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934–944.

    Article  CAS  Google Scholar 

  141. Tuo, J. Q.; Lin, Y. X.; Zhu, Y. H.; Jiang, H. L.; Li, Y. H.; Cheng, L.; Pang, R. C.; Shen, J. H.; Song, L.; Li, C. Z. Local structure tuning in Fe-N-C catalysts through support effect for boosting CO2 electroreduction. Appl. Catal. B 2020, 272, 118960.

    Article  CAS  Google Scholar 

  142. Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G.; Wu, G.; Li, Y. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018, 8, 3116–3122.

    Article  CAS  Google Scholar 

  143. Hou, Y.; Liang, Y. L.; Shi, P. C.; Huang, Y. B.; Cao, R. Atomically dispersed Ni species on N-doped carbon nanotubes for electro-reduction of CO2 with nearly 100% CO selectivity. Appl. Catal. B 2020, 271, 118929.

    Article  CAS  Google Scholar 

  144. Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W; He, H.; Zhou, K. B. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B 2020, 268, 118747.

    Article  CAS  Google Scholar 

  145. Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y. L.; Qian, L. P.; Xu, X. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044–1053.

    Article  CAS  Google Scholar 

  146. Zhao, K.; Nie, X. W.; Wang, H. Z.; Chen, S.; Quan, X.; Yu, H. T.; Choi, W.; Zhang, G. H.; Kim, B.; Chen, J. G. Selective electro-reduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.

    Article  CAS  Google Scholar 

  147. Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

    Article  CAS  Google Scholar 

  148. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

    Article  CAS  Google Scholar 

  149. Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.

    Article  CAS  Google Scholar 

  150. Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.

    Article  CAS  Google Scholar 

  151. Chao, C. Y. H. Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Build. Environ. 2001, 36, 999–1007.

    Article  Google Scholar 

  152. Fujiwara, K.; Pratsinis, S. E. Single Pd atoms on TiO2 dominate photocatalytic NO, removal. Appl. Catal. B 2018, 226, 127–134.

    Article  CAS  Google Scholar 

  153. Ou, M.; Wan, S. P.; Zhong, Q.; Zhang, S. L.; Wang, Y. N. Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light. Int. J. Hydrogen Energy 2017, 42, 27043–27054.

    Article  CAS  Google Scholar 

  154. Wu, Q.; Wei, W.; Lv, X. S.; Wang, Y. Y.; Huang, B. B.; Dai, Y. Cu@g-C3N4: An efficient single-atom electrocatalyst for NO electrochemical reduction with suppressed hydrogen evolution. J. Phys. Chem. C 2019, 123, 31043–31049.

    Article  CAS  Google Scholar 

  155. Tang, Y. A.; Chen, W. G.; Li, C. G.; Pan, L. J.; Dai, X. Q.; Ma, D. W. Adsorption behavior of Co anchored on graphene sheets toward NO, SO2, NH3, CO and HCN molecules. Appl. Surf. Sci. 2015, 342, 191–199.

    Article  CAS  Google Scholar 

  156. Gao, Z. Y.; Yang, W. J.; Ding, X. L.; Lv, G.; Yan, W. P. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S). Appl. Surf. Sci. 2018, 436, 585–595.

    Article  CAS  Google Scholar 

  157. Li, N.; Song, X. Z.; Wang, L.; Geng, X. L.; Wang, H.; Tang, H. Y.; Bian, Z. Y. Single-atom cobalt catalysts for electrocatalytic hydrodechlorination and oxygen reduction reaction for the degradation of chlorinated organic compounds. ACS Appl. Mater. Interfaces 2020, 12, 24019–24029.

    Article  CAS  Google Scholar 

  158. Wang, Y. B.; Zhao, X.; Cao, D.; Wang, Y.; Zhu, Y. F. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Appl. Catal. B 2017, 211, 79–88.

    Article  CAS  Google Scholar 

  159. Wang, F. L.; Wang, Y. F.; Li, Y. Y.; Cui, X. H.; Zhang, Q. X.; Xie, Z. J.; Liu, H. J.; Feng, Y. P.; Lv, W. Y.; Liu, G. G. The facile synthesis of a single atom-dispersed silver-modified ultrathin g-C3N4 hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate. Dalton Trans. 2018, 47, 6924–6933.

    Article  CAS  Google Scholar 

  160. An, S. F.; Zhang, G. H.; Wang, T. W.; Zhang, W. N.; Li, K. Y.; Song, C. S.; Miller, J. T.; Miao, S.; Wang, J. H.; Guo, X. W. High-density ultra-small clusters and single-atom fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced Oxidation processes. ACS Nano 2018, 12, 9441–9450.

    Article  CAS  Google Scholar 

  161. Yao, Y. J.; Yin, H. Y.; Gao, M. X.; Hu, Y.; Hu, H. H.; Yu, M. J.; Wang, S. B. Electronic structure modulation of covalent organic frameworks by single-atom Fe doping for enhanced oxidation of aqueous contaminants. Chem. Eng. Sci. 2019, 209, 115211.

    Article  CAS  Google Scholar 

  162. Li, Y.; Yang, T.; Qiu, S. H.; Lin, W. Q.; Yan, J. T.; Fan, S. S.; Zhou, Q. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species. Chem. Eng. J. 2020, 389, 124382.

    Article  CAS  Google Scholar 

  163. Chen, M. T.; Wang, N.; Zhu, L. H. Single-atom dispersed Co-N-C: A novel adsorption-catalysis bifunctional material for rapid removing bisphenol A. Catal. Today 2020, 348, 187–193.

    Article  CAS  Google Scholar 

  164. Xu, H. D.; Jiang, N.; Wang, D.; Wang, L. H.; Song, Y. F.; Chen, Z. Q.; Ma, J.; Zhang, T. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways. Appl. Catal. B 2020, 263, 118350.

    Article  CAS  Google Scholar 

  165. Zhang, Y.; Liu, Y. X.; Xie, S. H.; Huang, H. B.; Guo, G. S.; Dai, H. X.; Deng, J. G. Supported ceria-modified silver catalysts with high activity and stability for toluene removal. Environ. Int. 2019, 128, 335–342.

    Article  CAS  Google Scholar 

  166. Zhang, H. Y.; Sui, S. H.; Zheng, X. M.; Cao, R. R.; Zhang, P. Y. One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Appl. Catal. B 2019, 257, 117878.

    Article  CAS  Google Scholar 

  167. Xu, T. Z.; Zheng, H.; Zhang, P. Y. Isolated Pt single atomic sites anchored on nanoporous TiO2 film for highly efficient photo-catalytic degradation of low concentration toluene. J. Hazard. Mater. 2020, 388, 121746.

    Article  CAS  Google Scholar 

  168. Wang, Z. W.; Yang, H. G.; Liu, R.; Xie, S. H.; Liu, Y. X.; Dai, H. X.; Huang, H. B.; Deng, J. G. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. J. Hazard. Mater. 2020, 392, 122258.

    Article  CAS  Google Scholar 

  169. Wen, X. D.; Zhang, Q. Q.; Guan, J. Q. Applications of metal-organic framework-derived materials in fuel cells and metal-air batteries. Coord. Chem. Rev. 2020, 409, 213214.

    Article  CAS  Google Scholar 

  170. Liu, J.; Jiao, M. G.; Lu, L. L.; Barkholtz, H. M.; Li, Y. P.; Wang, Y.; Jiang, L. H.; Wu, Z. J.; Liu, D. J.; Zhuang, L. et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 2017, 8, 15938.

    Article  CAS  Google Scholar 

  171. Liu, J.; Jiao, M. G.; Mei, B. B.; Tong, Y. X.; Li, Y. P.; Ruan, M. B.; Song, P.; Sun, G. Q.; Jiang, L. H.; Wang, Y. et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 1163–1167.

    Article  CAS  Google Scholar 

  172. Liu, Q. T.; Li, Y. C.; Zheng, L. R.; Shang, J. X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells. Adv. Energy Mater. 2020, 10, 2000689.

    Article  CAS  Google Scholar 

  173. Miao, Z. P.; Wang, X. M.; Tsai, M. C.; Jin, Q. Q.; Liang, J. S.; Ma, F.; Wang, T. Y.; Zheng, S. J.; Hwang, B. J.; Huang, Y. H. et al. Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy. Adv. Energy Mater. 2018, 8, 1801226.

    Article  Google Scholar 

  174. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 74, 937–942.

    Article  Google Scholar 

  175. He, Y. H.; Hwang, S.; Cullen, D. A.; Uddin, M. A.; Langhorst, L.; Li, B. Y.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J. et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy. Energy Environ. Sci. 2019, 12, 250–260.

    Article  CAS  Google Scholar 

  176. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  177. Bouwkamp-Wijnoltz, A. L.; Visscher, W.; van Veen, J. A. R.; Boellaard, E.; van der Kraan, A. M.; Tang, S. C. On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: An in situ mössbauer study. J. Phys. Chem. B 2002, 106, 12993–13001.

    Article  CAS  Google Scholar 

  178. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  Google Scholar 

  179. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal Sites: A stable and active pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  CAS  Google Scholar 

  180. Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

    Article  CAS  Google Scholar 

  181. Zang, J.; Wang, F. T.; Cheng, Q. Q.; Wang, G. L.; Ma, L. S.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Xie, D. Q.; Yang, H. Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. J. Mater. Chem. A 2020, 8, 3686–3691.

    Article  CAS  Google Scholar 

  182. Zhou, Y. D.; Yang, W.; Utetiwabo, W.; Lian, Y. M.; Yin, X.; Zhou, L.; Yu, P. W.; Chen, R. J.; Sun, S. R. Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst. J. Phys. Chem. Lett. 2020, 11, 1404–1410.

    Article  CAS  Google Scholar 

  183. Zhang, C.; Sha, J.; Fei, H.; Liu, M.; Yazdi, S.; Zhang, J.; Zhong, Q.; Zou, X.; Zhao, N.; Yu, H. et al. Single-Atomic ruthenium catalytic site on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 2017, 11, 6930–6941.

    Article  CAS  Google Scholar 

  184. Zhang, Q. Q.; Duan, Z. Y.; Wang, Y.; Li, L. N.; Nan, B.; Guan, J. Q. Atomically dispersed iridium catalysts for multifunctional electro-catalysis. J. Mater. Chem. A 2020, 8, 19665–19673.

    Article  CAS  Google Scholar 

  185. Wan, G.; Yu, P. F.; Chen, H. R.; Wen, J. G.; Sun, C. J.; Zhou, H.; Zhang, N.; Li, Q. R.; Zhao, W. P.; Xie, B. et al. Engineering singleatom cobalt catalysts toward improved electrocatalysis. Small 2018, 14, 1704319.

    Article  Google Scholar 

  186. Wen, X. D.; Bai, L.; Li, M.; Guan, J. Q. Atomically dispersed cobalt-and nitrogen-codoped graphene toward bifunctional catalysis of oxygen reduction and hydrogen evolution reactions. ACS Sustainable Chem. Eng. 2019, 7, 9249–9256.

    Article  CAS  Google Scholar 

  187. Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

    Article  CAS  Google Scholar 

  188. Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. E.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870–877.

    Article  CAS  Google Scholar 

  189. Zhang, Q. Q.; Guan, J. Q. Mono-/multinuclear water oxidation catalysts. ChemSusChem 2019, 12, 3209–3235.

    Article  CAS  Google Scholar 

  190. Luo, F.; Hu, H.; Zhao, X.; Yang, Z. H.; Zhang, Q.; Xu, J. X.; Kaneko, T.; Yoshida, Y.; Zhu, C. Z.; Cai, W. W. Robust and stable acidic overall water splitting on Ir single atoms. Nano Lett. 2020, 20, 2120–2128.

    Article  CAS  Google Scholar 

  191. Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

    Article  Google Scholar 

  192. Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

    Article  CAS  Google Scholar 

  193. Lei, C. J.; Chen, H. Q.; Cao, J. H.; Yang, J.; Qiu, M.; Xia, Y.; Yuan, C.; Yang, B.; Li, Z. J.; Zhang, X. W. et al. Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 2018, 8, 1801912.

    Article  Google Scholar 

  194. Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

    Article  CAS  Google Scholar 

  195. Qiu, Y.; Peng, X. Y.; Lü, F.; Mi, Y. Y.; Zhuo, L. C.; Ren, J. Q.; Liu, X. J.; Luo, J. Single-atom catalysts for the electrocatalytic reduction of nitrogen to ammonia under ambient conditions. Chem. Asian J. 2019, 14, 2770–2779.

    Article  CAS  Google Scholar 

  196. Cao, Y. Y.; Gao, Y. J.; Zhou, H.; Chen, X. L.; Hu, H.; Deng, S. W.; Zhong, X.; Zhuang, G. L.; Wang, J. G. Highly efficient ammonia synthesis electrocatalyst: Single Ru atom on naturally nanoporous carbon materials. Adv. Theor. Simul. 2018, 1, 1800018.

    Article  Google Scholar 

  197. Ling, C. Y.; Bai, X. W.; Ouyang, Y. X.; Du, A. J.; Wang, J. L. Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 2018, 122, 16842–16847.

    Article  CAS  Google Scholar 

  198. Li, X. F.; Li, Q. K.; Cheng, J.; Liu, L. L.; Yan, Q.; Wu, Y. C.; Zhang, X. H.; Wang, Z. Y.; Qiu, Q.; Luo, Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016, 138, 8706–8709.

    Article  CAS  Google Scholar 

  199. Huang, Y.; Yang, T. T.; Yang, L.; Liu, R.; Zhang, G. Z.; Jiang, J.; Luo, Y.; Lian, P.; Tang, S. B. Graphene-boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A 2019, 7, 15173–15180.

    Article  CAS  Google Scholar 

  200. Zheng, X. N.; Yao, Y.; Wang, Y.; Liu, Y. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: A first-principles study. Nanoscale 2020, 12, 9696–9707.

    Article  CAS  Google Scholar 

  201. Ou, P. F.; Zhou, X.; Meng, F. C.; Chen, C.; Chen, Y. Q.; Song, J. Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation. Nanoscale 2019, 11, 13600–13611.

    Article  CAS  Google Scholar 

  202. Zhao, J.; Zhao, J. X.; Cai, Q. H. Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 9248–9255.

    Article  CAS  Google Scholar 

  203. Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

    Article  CAS  Google Scholar 

  204. Wang, X. Q.; Wang, W. Y.; Qiao, M.; Wu, G.; Chen, W. X.; Yuan, T. W.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X. et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 2018, 63, 1246–1253.

    Article  CAS  Google Scholar 

  205. Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2018, 2, 1800202.

    Article  Google Scholar 

  206. Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 \({\rm{\mu }}{{\rm{g}}_{{\rm{N}}{{\rm{H}}_3}}} \cdot {\rm{mg}}_{{\rm{cat}}}^{ - 1} \cdot {{\rm{h}}^{ - 1}}\) for N2 electrochemical reduction over Ru single- atom catalysts. Adv. Mater. 2018, 30, 1803498.

    Article  Google Scholar 

  207. Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

    Article  CAS  Google Scholar 

  208. Qiu, J. Z.; Hu, J. B.; Lan, J. G.; Wang, L. F.; Fu, G. Y.; Xiao, R. J.; Ge, B. H.; Jiang, J. X. Pure siliceous zeolite-supported Ru singleatom active sites for ammonia synthesis. Chem. Mater. 2019, 31, 9413–9421.

    Article  CAS  Google Scholar 

  209. Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; Xiong, J.; Zhong, J.; Yan, C. L. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.

    Article  CAS  Google Scholar 

  210. Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420–427.

    Article  Google Scholar 

  211. Zhang, L. L.; Cong, M. Y.; Ding, X.; Jin, Y.; Xu, F. F.; Wang, Y.; Chen, L.; Zhang, L. X. A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 10888–10893.

    Article  CAS  Google Scholar 

  212. Zang, W. J.; Yang, T.; Zou, H. Y.; Xi, S. B.; Zhang, H.; Liu, X. M.; Kou, Z. K.; Du, Y. H.; Feng, Y. P.; Shen, L. et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction. ACS Catal. 2019, 9, 10166–10173.

    Article  CAS  Google Scholar 

  213. Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

    Article  CAS  Google Scholar 

  214. Gong, N. Q.; Ma, X. W.; Ye, X. X.; Zhou, Q. F.; Chen, X. A.; Tan, X. L.; Yao, S. K.; Huo, S. D.; Zhang, T. B.; Chen, S. Z. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 2019, 14, 379–387.

    Article  CAS  Google Scholar 

  215. He, F.; Mi, L.; Shen, Y. F.; Mori, T.; Liu, S. Q.; Zhang, Y. J. Fe-N-C artificial enzyme: Activation of oxygen for dehydro-genation and monoxygenation of organic substrates under mild condition and cancer therapeutic application. ACS Appl. Mater. Interfaces 2018, 10, 35327–35333.

    Article  CAS  Google Scholar 

  216. Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.

    CAS  Google Scholar 

  217. Wang, L.; Qu, X. Z.; Zhao, Y. X.; Weng, Y. Z. W.; Waterhouse, G. I. N.; Yan, H.; Guan, S. Y.; Zhou, S. Y. Exploiting single atom Iron centers in a porphyrin-like MOF for efficient cancer phototherapy. ACS Appl. Mater. Interfaces 2019, 11, 35228–35237.

    Article  CAS  Google Scholar 

  218. Lu, X. Y.; Gao, S. S.; Lin, H.; Yu, L. D.; Han, Y. H.; Zhu, P.; Bao, W. C.; Yao, H. L.; Chen, Y.; Shi, J. L. Bioinspired copper singleatom catalysts for tumor parallel catalytic therapy. Adv. Mater. 2020, 32, 2002246.

    Article  CAS  Google Scholar 

  219. Wu, Y.; Jiao, L.; Luo, X.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Yan, H. Y.; Gu, W. L.; Xu, B. Z.; Du, D. et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 2019, 15, 1903108.

    Article  CAS  Google Scholar 

  220. Niu, X. H.; Shi, Q. R.; Zhu, W. L.; Liu, D.; Tian, H. Y.; Fu, S. F.; Cheng, N.; Li, S. Q.; Smith, J. N.; Du, D. et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495.

    Article  CAS  Google Scholar 

  221. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Singleatom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    Article  CAS  Google Scholar 

  222. Chen, Q. M.; Li, S. Q.; Liu, Y.; Zhang, X. D.; Tang, Y.; Chai, H. X.; Huang, Y. M. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B 2020, 305, 127511.

    Article  CAS  Google Scholar 

  223. Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.

    Article  CAS  Google Scholar 

  224. Wu, Y.; Wu, J. B.; Jiao, L.; Xu, W. Q.; Wang, H. J.; Wei, X. Q.; Gu, W. L.; Ren, G. X.; Zhang, N.; Zhang, Q. H. et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 2020, 92, 3373–3379.

    Article  CAS  Google Scholar 

  225. Wen, W.; Yan, X.; Zhu, C. Z.; Du, D.; Lin, Y. H. Recent advances in electrochemical immunosensors. Anal. Chem. 2017, 89, 138–156.

    Article  CAS  Google Scholar 

  226. Yao, L. L.; Gao, S. J.; Liu, S.; Bi, Y. L.; Wang, R. R.; Qu, H.; Wu, Y. E.; Mao, Y.; Zheng, L. Single-atom enzyme-functionalized solution-gated graphene transistor for real-time detection of mercury Ion. ACS Appl. Mater. Interfaces 2020, 12, 6268–6275.

    Article  CAS  Google Scholar 

  227. Hou, H. F.; Mao, J. J.; Han, Y. H.; Wu, F.; Zhang, M. N.; Wang, D. S.; Mao, L. Q.; Li, Y. Single-atom electrocatalysis: A new approach to in vivo electrochemical biosensing. Sci. China Chem. 2019, 62, 1720–1724.

    Article  CAS  Google Scholar 

  228. Gu, W. L.; Wang, H. J.; Jiao, L.; Wu, Y.; Chen, Y. X.; Hu, L. Y.; Gong, J. M.; Du, D.; Zhu, C. Z. Single-atom Iron boosts electro-chemiluminescence. Angew. Chem., Int. Ed. 2020, 59, 3534–3538.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075099) and Natural Science Foundation of Jilin Province (No. 20180101291JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingqi Guan.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Guan, J. Applications of single-atom catalysts. Nano Res. 15, 38–70 (2022). https://doi.org/10.1007/s12274-021-3479-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3479-8

Keywords

Navigation