Skip to main content
Log in

Observing antimicrobial process with traceable gold nanoclusters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Understanding the interaction of nanomaterials with biological systems has always been of high concern and interest. An emerging type of nanomaterials, ultrasmall metal nanoclusters (NCs, < 2 nm in size), are promising in this aspect due to their well-defined molecular formulae and structures, as well as unique physical and chemical properties that are distinctly different from their larger counterparts (metal nanoparticles). For example, metal NCs possess intrinsic strong luminescence, which can be used for real-time tracking of their interactions with biological systems. Herein, luminescent gold (Au) NCs were used as traceable antimicrobial agents to study their interactions with the bacteria and to further understand their underlining antimicrobial mechanism. It is shown for the first time that the Au NCs would first attach on the bacterial membrane, penetrate, and subsequently accumulate inside the bacteria. Thereafter, the internalized Au NCs would induce reactive oxygen species (ROS) generation and damage the bacterial membrane, resulting in the leakage of bacterial contents, which can finally kill the bacteria. Traceable Au NCs (or other metal NCs) provide a promising platform to study the antimicrobial mechanisms as well as other fundamentals on the interfacing of functional nanomaterials with the biological systems, further increasing their acceptance in various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.

    Article  CAS  Google Scholar 

  2. Alkilany, A. M.; Lohse, S. E.; Murphy, C. J. The gold standard: Gold nanoparticle libraries to understand the nano-bio interface. Acc. Chem. Res. 2012, 46, 650–661.

    Article  CAS  Google Scholar 

  3. Tay, C. Y.; Setyawati, M. I.; Xie, J. P.; Parak, W. J.; Leong, D. T. Back to basics: Exploiting the innate physico-chemical characteristics of nanomaterials for biomedical applications. Adv. Funct. Mater. 2014, 24, 5936–5955.

    Article  CAS  Google Scholar 

  4. Setyawati, M. I.; Tay, C. Y.; Docter, D.; Stauber, R. H.; Leong, D. T. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev. 2015, 44, 8174–8199.

    Article  CAS  Google Scholar 

  5. Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X. G.; Wang, J. P.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 2019, 74, 279–286.

    Article  CAS  Google Scholar 

  6. Setyawati, M. I.; Tay, C. Y.; Bay, B. H.; Leong, D. T. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017, 11, 5020–5030.

    Article  CAS  Google Scholar 

  7. Zhu, J. Y.; Sevencan, C.; Zhang, M. K.; McCoy, R. S. A.; Ding, X. G.; Ye, J. J; Xie, J. P.; Ariga, K.; Feng, J.; Bay, B. H. et al. Increasing the potential interacting area of nanomedicine enhances its homotypic cancer targeting efficacy. ACS Nano 2020, 14, 3259–3271.

    Article  CAS  Google Scholar 

  8. Ding, X. G.; Peng, F.; Zhou, J.; Gong, W. B.; Slaven, G.; Loh, K. P.; Lim, C. T.; Leong, D. T. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 2019, 10, 41.

    Article  CAS  Google Scholar 

  9. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    Article  CAS  Google Scholar 

  10. Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

    Article  CAS  Google Scholar 

  11. Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.

    Article  CAS  Google Scholar 

  12. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    CAS  Google Scholar 

  13. Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

    Article  CAS  Google Scholar 

  14. Choi, S.; Dickson, R. M.; Yu, J. H. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.

    Article  CAS  Google Scholar 

  15. Tao, Y.; Li, M. Q.; Ren, J. S.; Qu, X. G. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636–8663.

    Article  CAS  Google Scholar 

  16. Luo, Z. T.; Zheng, K. Y.; Xie, J. P. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 2014, 50, 5143–5155.

    Article  CAS  Google Scholar 

  17. Zheng, K. Y.; Xie, J. P. Engineering ultrasmall metal nanoclusters as promising theranostic agents. Trends Chem. 2020, 2, 665–679.

    Article  CAS  Google Scholar 

  18. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Antimicrobial gold nanoclusters. ACS Nano 2017, 11, 6904–6910.

    Article  CAS  Google Scholar 

  19. Zheng, K. Y.; Xie, J. P. Composition-dependent antimicrobial ability of full-spectrum AuxAg25−x alloy nanoclusters. ACS Nano 2020, 14, 11533–11541.

    Article  CAS  Google Scholar 

  20. Huma, Z. E.; Javed, I.; Zhang, Z. Z.; Bilal, H.; Sun, Y. X.; Hussain, S. Z.; Davis, T. P.; Otzen, D. E.; Landersdorfer, C. B.; Ding, F. et al. Nanosilver mitigates biofilm formation via FapC amyloidosis inhibition. Small 2020, 16, 1906674.

    Article  CAS  Google Scholar 

  21. Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668.

    Article  CAS  Google Scholar 

  22. Crawford, S. E.; Hartmann, M. J.; Millstone, J. E. Surface chemistry-mediated near-infrared emission of small coinage metal nanoparticles. Acc. Chem. Res. 2019, 52, 695–703.

    Article  CAS  Google Scholar 

  23. Wang, G. L.; Huang, T.; Murray, R. W.; Menard, L.; Nuzzo, R. G. Near-IR luminescence of monolayer-protected metal clusters. J. Am. Chem. Soc. 2005, 127, 812–813.

    Article  CAS  Google Scholar 

  24. Tang, Z. H.; Robinson, D. A.; Bokossa, N.; Xu, B.; Wang, S. M.; Wang, G. L. Mixed dithiolate durene-DT and monothiolate phenylethanethiolate protected Au130 nanoparticles with discrete core and core-ligand energy states. J. Am. Chem. Soc. 2011, 133, 16037–16044.

    Article  CAS  Google Scholar 

  25. Liu, H. L.; Hong, G. S.; Luo, Z. T.; Chen, J. C.; Chang, J. L.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L. L. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 2019, 31, 1901015.

    Article  CAS  Google Scholar 

  26. Retnakumari, A.; Setua, S.; Menon, D.; Ravindran, P.; Muhammed, H.; Pradeep, T.; Nair, S.; Koyakutty, M. Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 2010, 21, 055103.

    Article  CAS  Google Scholar 

  27. Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 2011, 7, 2614–2620.

    Article  CAS  Google Scholar 

  28. Wu, X.; He, X. X.; Wang, K. M.; Xie, C.; Zhou, B.; Qing, Z. H. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2010, 2, 2244–2249.

    Article  CAS  Google Scholar 

  29. Chen, Y.; Montana, D. M.; Wei, H.; Cordero, J. M.; Schneider, M.; Le Guével, X.; Chen, O.; Bruns, O. T.; Bawendi, M. G. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett. 2017, 17, 6330–6334.

    Article  CAS  Google Scholar 

  30. Liu, J. B.; Yu, M. X.; Ning, X. H.; Zhou, C.; Yang, S. Y.; Zheng, J. PEGylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew. Chem, Int. Ed. 2013, 52, 12572–12576.

    Article  CAS  Google Scholar 

  31. Liu, J. B.; Yu, M. X.; Zhou, C.; Yang, S. Y.; Ning, X. H.; Zheng, J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 2013, 135, 4978–4981.

    Article  CAS  Google Scholar 

  32. Mustalahti, S.; Myllyperkio, P.; Malola, S.; Lahtinen, T.; Salorinne, K.; Koivisto, J.; Hakkinen, H.; Pettersson, M. Molecule-like photodynamics of Au102(pMBA)44 nanocluster. ACS Nano 2015, 9, 2328–2335.

    Article  CAS  Google Scholar 

  33. Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009, 5, 2067–2076.

    Article  CAS  Google Scholar 

  34. Tsoli, M.; Kuhn, H.; Brandau, W.; Esche, H.; Schmid, G. Cellular uptake and toxicity of Au55 clusters. Small 2005, 1, 841–844.

    Article  CAS  Google Scholar 

  35. Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.

    Article  CAS  Google Scholar 

  36. Wong, O. A.; Heinecke, C. L.; Simone, A. R.; Whetten, R. L.; Ackerson, C. J. Ligand symmetry-equivalence on thiolate protected gold nanoclusters determined by NMR spectroscopy. Nanoscale 2012, 4, 4099–4102.

    Article  CAS  Google Scholar 

  37. Levi-Kalisman, Y.; Jadzinsky, P. D.; Kalisman, N.; Tsunoyama, H.; Tsukuda, T.; Bushnell, D. A.; Kornberg, R. D. Synthesis and characterization of Au102(p-MBA)44 nanoparticles. J. Am. Chem. Soc. 2011, 133, 2976–2982.

    Article  CAS  Google Scholar 

  38. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 2018, 30, 2800–2808.

    Article  CAS  Google Scholar 

  39. Wu, Z. K.; Jin, R. C. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573.

    Article  CAS  Google Scholar 

  40. Devadas, M. S.; Kim, J.; Sinn, E.; Lee, D.; Goodson III, T.; Ramakrishna, G. Unique ultrafast visible luminescence in monolayer-protected Au25 clusters. J. Phys. Chem. C 2010, 114, 22417–22423.

    Article  CAS  Google Scholar 

  41. Goswami, N.; Yao, Q. F.; Luo, Z. T.; Li, J. G.; Chen, T. K.; Xie, J. P. Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 2016, 7, 962–975.

    Article  CAS  Google Scholar 

  42. Yu, Y.; Luo, Z. T.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D. E.; Xie, J. P. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 2014, 136, 1246–1249.

    Article  CAS  Google Scholar 

  43. Jia, X. F.; Li, J.; Wang, E. K. Cu nanoclusters with aggregation induced emission enhancement. Small 2013, 9, 3873–3879.

    Article  CAS  Google Scholar 

  44. Kang, X.; Wang, S.; Song, Y.; Jin, S.; Sun, G.; Yu, H.; Zhu, M. Bimetallic Au2Cu6 nanoclusters: Strong luminescence induced by the aggregation of copper(I) complexes with gold(0) species. Angew. Chem., Int. Ed. 2016, 128, 3675–3678.

    Article  Google Scholar 

  45. Yang, L. X.; Shang, L.; Nienhaus, G. U. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale 2013, 5, 1537–1543.

    Article  CAS  Google Scholar 

  46. Chithrani, B. D.; Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542–1550.

    Article  CAS  Google Scholar 

  47. Yue, T. T.; Zhang, X. R. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. ACS Nano 2012, 6, 3196–3205.

    Article  CAS  Google Scholar 

  48. Jiang, X.; Röcker, C.; Hafner, M.; Brandholt, S.; Dörlich, R. M.; Nienhaus, G. U. Endo-and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 2010, 4, 6787–6797.

    Article  CAS  Google Scholar 

  49. Roth, B. L.; Poot, M.; Yue, S. T.; Millard, P. J. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl. Environ. Microbiol. 1997, 63, 2421–2431.

    Article  CAS  Google Scholar 

  50. Lebaron, P.; Catala, P.; Parthuisot, N. Effectiveness of SYTOX green stain for bacterial viability assessment. Appl. Environ. Microbiol. 1998, 64, 2697–2700.

    Article  CAS  Google Scholar 

  51. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84.

    Article  CAS  Google Scholar 

  52. Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399.

    Article  CAS  Google Scholar 

  53. Whitman, C. P. The 4-oxalocrotonate tautomerase family of enzymes: How nature makes new enzymes using a β-α-β structural motif. Arch. Biochem. Biophys. 2002, 402, 1–13.

    Article  CAS  Google Scholar 

  54. Fuchs, S.; Pané-Farré, J.; Kohler, C.; Hecker, M.; Engelmann, S. Anaerobic gene expression in Staphylococcus aureus. J. Bacteriol. 2007, 189, 4275–4289.

    Article  CAS  Google Scholar 

  55. McCord, J. M.; Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055.

    Article  CAS  Google Scholar 

  56. Fee, J. A. Regulation of sod genes in Escherichia coli: Relevance to superoxide dismutase function. Mol. Microbiol. 1991, 5, 2599–2610.

    Article  CAS  Google Scholar 

  57. Zheng, K. Y.; Setyawati, M. I.; Lim, T. P.; Leong, D. T.; Xie, J. P. Antimicrobial cluster bombs: Silver nanoclusters packed with daptomycin. ACS Nano 2016, 10, 7934–7942.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Singapore (Nos. R-279-000-580-112 and R-279-000-538-114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Tai Leong or Jianping Xie.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Setyawati, M.I., Leong, D.T. et al. Observing antimicrobial process with traceable gold nanoclusters. Nano Res. 14, 1026–1033 (2021). https://doi.org/10.1007/s12274-020-3146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3146-5

Keywords

Navigation