Skip to main content
Log in

3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for in vivo delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions in vitro and in vivo based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules in vitro was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The in vivo sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for in vivo delivery of hydrophobic drugs for disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

    CAS  Google Scholar 

  2. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    CAS  Google Scholar 

  3. Kim, S. M.; Faix, P. H.; Schnitzer, J. E. Overcoming key biological barriers to cancer drug delivery and efficacy. J. Control. Release 2017, 267, 15–30.

    CAS  Google Scholar 

  4. Zhao, Z. M.; Ukidve, A.; Krishnan, V.; Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev. 2019, 143, 3–21.

    CAS  Google Scholar 

  5. Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.

    CAS  Google Scholar 

  6. Merino, S.; Martin, C.; Kostarelos, K.; Prato, M.; Vázquez, E. Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 2015, 9, 4686–4697.

    CAS  Google Scholar 

  7. Yoo, W.; Yoo, D.; Hong, E.; Jung, E.; Go, Y.; Singh, S. V. B.; Khang, G.; Lee, D. Acid-activatable oxidative stress-inducing polysaccharide nanoparticles for anticancer therapy. J. Control. Release 2018, 269, 235–244.

    CAS  Google Scholar 

  8. Huo, S. D.; Gong, N. Q.; Jiang, Y.; Chen, F.; Guo, H. B.; Gan, Y. L.; Wang, Z. S.; Herrmann, A.; Liang, X. J. Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation. Sci. Adv. 2019, 5, eaaw6264.

    CAS  Google Scholar 

  9. Cheng, X. J.; Sun, R.; Yin, L.; Chai, Z. F.; Shi, H. B.; Gao, M. Y. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv. Mater. 2017, 29, 1604894.

    Google Scholar 

  10. Liu, Z.; Xiong, M.; Gong, J. B.; Zhang, Y.; Bai, N.; Luo, Y. P.; Li, L. Y.; Wei, Y. Q.; Liu, Y. H.; Tan, X. Y. et al. Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat. Commun. 2014, 5, 4280.

    CAS  Google Scholar 

  11. Lu, J. Q.; Liu, X. S.; Liao, Y. P.; Wang, X.; Ahmed, A.; Jiang, W.; Ji, Y.; Meng, H.; Nel, A. E. Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 2018, 12, 11041–11061.

    CAS  Google Scholar 

  12. Dogra, P.; Adolphi, N. L.; Wang, Z. H.; Lin, Y. S.; Butler, K. S.; Durfee, P. N.; Croissant, J. G.; Noureddine, A.; Coker, E. N.; Bearer, E. L. et al. Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nat. Commun. 2018, 9, 4551.

    Google Scholar 

  13. Durfee, P. N.; Lin, Y. S.; Dunphy, D. R.; Muñiz, A. J.; Butler, K. S.; Humphrey, K. R.; Lokke, A. J.; Agola, J. O.; Chou, S. S.; Chen, I. M. et al. Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS Nano 2016, 10, 8325–8345.

    CAS  Google Scholar 

  14. Singh, D.; Dubey, P.; Pradhan, M.; Singh, M. R. Ceramic nanocarriers: Versatile nanosystem for protein and peptide delivery. Expert Opin. Drug Deliv. 2013, 10, 241–259.

    Google Scholar 

  15. Hauser, A. K.; Mitov, M. I.; Daley, E. F.; McGarry, R. C.; Anderson, K. W.; Hilt, J. Z. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 2016, 105, 127–135.

    CAS  Google Scholar 

  16. Laurent, S.; Saei, A. A.; Behzadi, S.; Panahifar, A.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert Opin. Drug Deliv. 2014, 11, 1449–1470.

    CAS  Google Scholar 

  17. Li, S. P.; Jiang, Q.; Liu, S. L.; Zhang, Y. L.; Tian, Y. H.; Song, C.; Wang, J.; Zou, Y. G.; Anderson, G. J.; Han, J. Y. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258–264.

    CAS  Google Scholar 

  18. Sun, W. J.; Ji, W. Y.; Hall, J. M.; Hu, Q. Y.; Wang, C.; Beisel, C. L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of crispr-cas9 for genome editing. Angew. Chem., Int. Ed. 2015, 54, 12029–12033.

    CAS  Google Scholar 

  19. Zhu, G Z.; Zheng, J.; Song, E. Q.; Donovan, M.; Zhang, K. J.; Liu, C.; Tan, W. H. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. USA 2013, 110, 7998–8003.

    CAS  Google Scholar 

  20. Li, H.; Lee, T.; Dziubla, T.; Pi, F. M.; Guo, S. J.; Xu, J.; Li, C.; Haque, F. Liang, X. J.; Guo, P. X. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 2015, 10, 631–655.

    CAS  Google Scholar 

  21. Afonin, K. A.; Kasprzak, W. K.; Bindewald, E.; Kireeva, M.; Viard, M.; Kashlev, M.; Shapiro, B. A. In silico design and enzymatic synthesis of functional RNA nanoparticles. Acc. Chem. Res. 2014, 47, 1731–1741.

    CAS  Google Scholar 

  22. Monferrer, A.; Zhang, D.; Lushnikov, A. J.; Hermann, T. Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules. Nat. Commun. 2019, 10, 608.

    CAS  Google Scholar 

  23. Shu, D.; Shu, Y.; Haque, F.; Abdelmawla, S.; Guo, P. X. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 2011, 6, 658–667.

    CAS  Google Scholar 

  24. Shu, D.; Li, H.; Shu, Y.; Xiong, G. F.; Carson III, W. E.; Haque, F.; Xu, R.; Guo, P. X. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 2015, 9, 9731–9740.

    CAS  Google Scholar 

  25. Yin, H. R.; Xiong, G. F.; Guo, S. J.; Xu, C.; Xu, R. C.; Guo, P. X.; Shu, D. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol. Ther. 2019, 27, 1252–1261.

    CAS  Google Scholar 

  26. Xu, C. C.; Haque, F.; Jasinski, D. L.; Binzel, D. W.; Shu, D.; Guo, P. X. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett. 2018, 414, 57–70.

    CAS  Google Scholar 

  27. Guo, S. J.; Xu, C. C.; Yin, H. R.; Hill, J.; Pi, F. M.; Guo, P. X. Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. WIREs Nanomedicine Nanobiotechnol. 2020, 12, e1582.

    CAS  Google Scholar 

  28. Jasinski, D.; Haque, F.; Binzel, D. W.; Guo, P. X. Advancement of the emerging field of RNA nanotechnology. ACS Nano 2017, 11, 1142–1164.

    CAS  Google Scholar 

  29. Chiu, Y. T. E.; Li, H. Z.; Choi, C. H. J. Progress toward understanding the interactions between DNA nanostructures and the cell. Small 2019, 15, 1805416.

    Google Scholar 

  30. Jasinski, D. L.; Li, H.; Guo, P. X. The effect of size and shape of RNA nanoparticles on biodistribution. Mol. Ther. 2018, 26, 784–792.

    CAS  Google Scholar 

  31. Jasinski, D. L.; Yin, H. R.; Li, Z. F.; Guo, P. X. Hydrophobic effect from conjugated chemicals or drugs on in vivo biodistribution of rna nanoparticles. Hum. Gene Ther. 2018, 29, 77–86.

    CAS  Google Scholar 

  32. Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

    CAS  Google Scholar 

  33. Anderson, C. R.; Gnopo, Y. D. M.; Gambinossi, F.; Mylon, S. E.; Ferri, J. K. Modulation of cell responses to Ag-(MeO2MA-co-OEGMA): Effects of nanoparticle surface hydrophobicity and serum proteins on cellular uptake and toxicity. J. Biomed. Mater. Res. A 2018, 106, 1061–1071.

    CAS  Google Scholar 

  34. Tan, E.; Wilson, T. J.; Nahas, M. K.; Clegg, R. M.; Lilley, D. M. J.; Ha, T. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc. Natl. Acad. Sci. USA 2003, 100, 9308–9313.

    CAS  Google Scholar 

  35. Diamond, J. M.; Turner, D. H.; Mathews, D. H. Thermodynamics of three-way multibranch loops in RNA. Biochemistry 2001, 40, 6971–6981.

    CAS  Google Scholar 

  36. Benkato, K.; O’Brien, B.; Bui, M. N.; Jasinski, D. L.; Guo, P. X.; Khisamutdinov, E. F. Evaluation of thermal stability of RNA nanoparticles by temperature gradient gel electrophoresis (TGGE) in native condition. In RNA Nanostructures. Bindewald, E.; Shapiro, B. A., Eds.; Humana Press: New York, 2017; pp 123–133.

    Google Scholar 

  37. Birkholz, O.; Burns, J. R.; Richter, C. P.; Psathaki, O. E.; Howorka, S.; Piehler, J. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat. Commun. 2018, 9, 1521.

    Google Scholar 

  38. Infante, R. E.; Radhakrishnan, A. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. eLife 2017, 6, e25466.

    Google Scholar 

  39. Gerstle, Z.; Desai, R.; Veatch, S. L. Giant plasma membrane vesicles: An experimental tool for probing the effects of drugs and other conditions on membrane domain stability. Methods Enzymol. 2018, 603, 129–150.

    CAS  Google Scholar 

  40. Sezgin, E.; Kaiser, H. J.; Baumgart, T.; Schwille, P.; Simons, K.; Levental, I. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 2012, 7, 1042–1051.

    CAS  Google Scholar 

  41. Lin, C. M.; Li, C. S.; Sheng, Y. J.; Wu, D. T.; Tsao, H. K. Size-dependent properties of small unilamellar vesicles formed by model lipids. Langmuir 2012, 28, 689–700.

    CAS  Google Scholar 

  42. Adler, J.; Parmryd, I. Quantifying colocalization by correlation: The pearson correlation coefficient is superior to the mander’s overlap coefficient. Cytometry A 2010, 77A, 733–742.

    Google Scholar 

  43. Dunn, K. W.; Kamocka, M. M.; McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011, 300, C723–C742.

    CAS  Google Scholar 

  44. Zhou, Y. M.; Dai, Z. F. New strategies in the design of nanomedicines to oppose uptake by the mononuclear phagocyte system and enhance cancer therapeutic efficacy. Chem. Asian J. 2018, 13, 3333–3340.

    CAS  Google Scholar 

  45. Monopoli, M. P.; Åberg, C.; Salvati, A.; Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779–786.

    CAS  Google Scholar 

  46. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B.; Dawson, K. A. Physical-chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–2534.

    CAS  Google Scholar 

  47. Saie, A. A.; Ray, M.; Mahmoudi, M.; Rotello, V. M. Engineering the nanoparticle-protein interface for cancer therapeutics. In Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Mirkin, C. A.; Meade, T. J.; Petrosko, S. H.; Stegh, A. H., Eds.; Springer: Cham, 2015; pp 245–273.

    Google Scholar 

  48. Caracciolo, G.; Farokhzad, O. C.; Mahmoudi, M. Biological identity of nanoparticles in vivo: Clinical implications of the protein corona. Trends Biotechnol. 2017, 35, 257–264.

    CAS  Google Scholar 

  49. Tsoi, K. M.; MacParland, S. A.; Ma, X. Z.; Spetzler, V. N.; Echeverri, J.; Ouyang, B.; Fadel, S. M.; Sykes, E. A.; Goldaracena, N.; Kaths, J. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 2016, 15, 1212–1221.

    CAS  Google Scholar 

  50. Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348.

    CAS  Google Scholar 

  51. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781.

    CAS  Google Scholar 

  52. Du, B. J.; Yu, M. X.; Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 2018, 3, 358–374.

    Google Scholar 

  53. Du, B. J.; Jiang, X. Y.; Das, A.; Zhou, Q. H.; Yu, M. X.; Jin, R. C.; Zheng, J. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 2017, 12, 1096–1102.

    CAS  Google Scholar 

  54. Amoozgar, Z.; Yeo, Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 219–233.

    CAS  Google Scholar 

  55. Hoshyar, N.; Gray, S.; Han, H. B.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016, 11, 673–692.

    CAS  Google Scholar 

Download references

Acknowledgements

The research in P. G.’s lab was supported by NIH grants (Nos. R01EB019036, U01CA151648, and U01CA207946) to Peixuan Guo. The cryo-EM work was supported by NIH grant No. 5941GM103832 (W. C.) and Office of Naval Research grant No. N00014-20-1-2084 (W. C.). P. G.’s Sylvan G. Frank Endowed Chair position in Pharmaceutics and Drug Delivery is funded by the CM Chen Foundation. The authors would like to thank the Nanoimaging Core Facility at UNMC for assistance with AFM imaging. The facility is in part supported by funds received from the Nebraska Research Initiative (NRI). The animal study protocol was approved by the Institutional Animal Care and Use Committee at The Ohio State University. The authors would like to thank Alyssa Castillo for help in sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixuan Guo.

Additional information

Conflict of interests

P. G. is the cofounder of ExonanoRNA LLC. He is also the consultant of Oxford Nanopore Technologies and Nanobio Delivery Pharmaceutical Co. Ltd, as well as the cofounder of Shenzhen P&Z Bio-medical Co. Ltd and its subsidiary US P&Z Biological Technology LLC. His inventions at the University of Kentucky have been licensed to Matt Holding and Nanobio Delivery Pharmaceutical Co., Ltd. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Zhang, K., Yin, H. et al. 3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution. Nano Res. 13, 3241–3247 (2020). https://doi.org/10.1007/s12274-020-2996-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2996-1

Keywords

Navigation