Skip to main content
Log in

Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon materials featuring hierarchical pores and atomically dispersed metal sites are promising catalysts for energy storage and conversion applications. Herein, we developed a facile strategy to construct functional carbon materials with a fluffy peony-like structure and dense binary FeCo-Nx active sites (termed as f-FeCo-CNT). By regulating the metal content in precursors, a three-dimensional (3D) interconnected conductive carbon nanotubes network was in-situ formed throughout the atomically dispersed FeCo-NC matrix during pyrolysis. Taking advantage of rich pore hierarchy and co-existence of highly active FeCo-Nx sites and beneficial FeCo alloy nanoparticles, the f-FeCo-CNT material exhibited excellent bifunctional performance towards oxygen reduction reaction/oxygen evolution reactions (ORR/OER) with respect to the atomically dispersed FeCo-NC (SA-f-FeCo-NC) and commercial Pt/C+RuO2 mixture, surpassing the SA-f-FeCo-NC with a 20 mV higher ORR half-wave potential and a 100 mV lower OER overpotential (at 10.0 mA/cm2). Remarkably, the f-FeCo-CNT-assembled Zn-air battery (ZAB) possessed a maximum specific power of 195.8 mW/cm2, excellent rate capability, and very good cycling stability at large current density of 20.0 mA/cm2. This work provides a facile and feasible synthetic strategy of constructing low-cost cathode materials with excellent comprehensive ZAB performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neburchilov, V.; Wang, H. J.; Martin, J. J.; Qu, W. A review on air cathodes for zinc-air fuel cells. J. Power Sources2010, 195, 1271–1291.

    CAS  Google Scholar 

  2. Lee, J. S.; Kim, S. T.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal-air batteries: Metal-air batteries with high energy density: Li-Air versus Zn-Air. Adv. Energy Mater.2011, 1, 2.

    Google Scholar 

  3. Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy2019, 62, 550–587.

    Google Scholar 

  4. Cheng, F. Y.; Chen, J. Metal-air batteries: from oxygenreduction electrochemistry to cathode catalysts. Chem. Soc. Rev.2012, 41, 2172–2192.

    CAS  Google Scholar 

  5. Fu, J.; Cao, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater.2017, 29, 1604685.

    Google Scholar 

  6. Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev.2014, 43, 5257–5275.

    CAS  Google Scholar 

  7. Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad- Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc.2010, 132, 12170–12171.

    CAS  Google Scholar 

  8. Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-Air batteries. Adv. Funct. Mater.2018, 28, 1803329.

    Google Scholar 

  9. Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater.2018, 30, 1801995.

    Google Scholar 

  10. Mao, S.; Wen, Z. H.; Huang, T. Z.; Hou, Y.; Chen, J. H. Highperformance bi-functional electrocatalysts of 3D crumpled graphenecobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ. Sci.2014, 7, 609–616.

    CAS  Google Scholar 

  11. Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res.2019, 12, 1651–1657.

    CAS  Google Scholar 

  12. Wang, J.; Wu, H. H.; Gao, D. F.; Miao, S.; Wang, G. X.; Bao, X. H. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery. Nano Energy2015, 13, 387–396.

    CAS  Google Scholar 

  13. Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc.2014, 136, 11027–11033.

    CAS  Google Scholar 

  14. Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J. Am. Chem. Soc.2016, 138, 3570–3578.

    CAS  Google Scholar 

  15. Mamtani, K.; Singh, D.; Tian, J.; Millet, J. M. M.; Miller, J. T.; Co, A. C.; Ozkan, U. S. Evolution of N-coordinated iron-carbon (FeNC) catalysts and their Oxygen Reduction (ORR) performance in acidic media at various stages of catalyst synthesis: An attempt at benchmarking. Catal. Lett.2016, 146, 1749–1770.

    CAS  Google Scholar 

  16. Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater.2016, 28, 9266–9291.

    CAS  Google Scholar 

  17. Bae, S. H.; Kim, J. E.; Randriamahazaka, H.; Moon, S. Y.; Park, J. Y.; Oh, I. K. Seamlessly conductive 3D nanoarchitecture of core-shell Ni-Co nanowire network for highly efficient oxygen evolution. Adv. Energy Mater.2017, 7, 1601492.

    Google Scholar 

  18. Sun, Y. H.; Zhu, Y. H.; Jiang, H. L.; Shen, J. H.; Yang, X. L.; Zou, W. J.; Chen, J. D.; Li, C. Z. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale2014, 6, 15080–15089.

    Google Scholar 

  19. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc.2013, 135, 12329–12337.

    CAS  Google Scholar 

  20. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule2018, 2, 1242–1264.

    CAS  Google Scholar 

  21. Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science2017, 357, 479–484.

    CAS  Google Scholar 

  22. Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal.2018, 1, 339–348.

    CAS  Google Scholar 

  23. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res.2013, 46, 1740–1748.

    CAS  Google Scholar 

  24. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem.2018, 2, 65–81.

    CAS  Google Scholar 

  25. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal.2018, 1, 63–72.

    CAS  Google Scholar 

  26. Zang, W. J.; Sumboja, A.; Ma, Y. Y.; Zhang, H.; Wu, Y.; Wu, S. S.; Wu, H. J.; Liu, Z. L.; Guan, C.; Wang, J. et al. Single Co atoms anchored in porous N-doped carbon for efficient Zinc-Air battery cathodes. ACS Catal.2018, 8, 8961–8969.

    CAS  Google Scholar 

  27. Tang, C.; Wang, B.; Wang, H. F.; Zhang, Q. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-Air batteries. Adv. Mater.2017, 29, 1703185.

    Google Scholar 

  28. Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao, D. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Nat. Acad. Sci. USA2018, 115, 6626–6631.

    CAS  Google Scholar 

  29. Kramm, U. I.; Herrmann-Geppert, I.; Behrends, J.; Lips, K.; Fiechter, S.; Bogdanoff, P. On an easy way to prepare Metal-Nitrogen doped Carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc.2016, 138, 635–640.

    CAS  Google Scholar 

  30. Zhang, D. Y.; Chen, W. X.; Li, Z.; Chen, Y. J.; Zheng, L. R.; Gong, Y.; Li, Q. H.; Shen, R. A.; Han, Y. H.; Cheong, W. C. et al. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chem. Commun.2018, 54, 4274–4277.

    CAS  Google Scholar 

  31. Wan, G.; Lin, X. M.; Wen, J. G.; Zhao, W. P.; Pan, L. Y.; Tian, J.; Li, T.; Chen, H. R.; Shi, J. L. Tuning the performance of single-atom electrocatalysts: Support-induced structural reconstruction. Chem. Mater.2018, 30, 7494–7502.

    CAS  Google Scholar 

  32. Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Zinc-air batteries: Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery (Adv. Energy Mater. 13/2017). Adv. Eng. Mater.2017, 13, 1602420.

    Google Scholar 

  33. Zhang, G. X.; Jia, Y.; Zhang, C.; Xiong, X. Y.; Sun, K.; Chen, R. D.; Chen, W. X.; Kuang, Y.; Zheng, L. R.; Tang, H. L. et al. A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies. Energy Environ. Sci.2019, 12, 1317–1325.

    CAS  Google Scholar 

  34. Li, S.; Cheng, C.; Zhao, X. J.; Schmidt, J.; Thomas, A. Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem., Int. Ed.2018, 57, 1856–1862.

    CAS  Google Scholar 

  35. Li, C. L.; Wu, M. C.; Liu, R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B: Environ.2019, 244, 150–158.

    CAS  Google Scholar 

  36. Wang, H. F.; Tang, C.; Zhu, X. L.; Zhang, Q. A “point-line-point ” hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions. J. Mater. Chem. A2016, 4, 3379–3385.

    CAS  Google Scholar 

  37. Lai, C. L.; Wang, J.; Wen, L.; Xuan, C. J.; Xiao, W. P.; Zhao, T. H.; Huang, T.; Chen, L. X.; Zhu, Y.; Wang, D. L. Restricting growth of Ni3Fe nanoparticles on heteroatom-doped carbon nanotube/graphene nanosheets as air-electrode electrocatalyst for Zn-air battery. ACS Appl. Mater. Interfaces2018, 10, 38093–38100.

    CAS  Google Scholar 

  38. Liu, Y.; Li, F.; Yang, H. D.; Li, J.; Ma, P.; Zhu, Y.; Ma, J. T. Two-step synthesis of cobalt iron alloy nanoparticles embedded in nitrogen-doped carbon nanosheets/carbon nanotubes for the oxygen evolution reaction. ChemSusChem2018, 11, 2358–2366.

    CAS  Google Scholar 

  39. Chen, B. H.; He, X. B.; Yin, F. X.; Wang, H.; Liu, D. J.; Shi, R. X.; Chen, J. N.; Yin, H. W. MO-Co@N-doped carbon (M = Zn or Co): Vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-Air battery. Adv. Funct. Mater.2017, 27, 1700795.

    Google Scholar 

  40. Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed.2018, 130, 16398–16402.

    Google Scholar 

  41. Fu, G. T.; Liu, Y.; Chen, Y. F.; Tang Y. W.; Goodenough, J. B.; Lee, J. M. Robust N-doped carbon aerogels strongly coupled with iron-cobalt particles as efficient bifunctional catalysts for rechargeable Zn-air batteries. Nanoscale2013, 10, 19937–19944.

    Google Scholar 

  42. Niu, W. H.; Pakhira, S.; Marcus, K.; Li, Z.; Mendoza- Cortes, J. L.; Yang, Y. Apically dominant mechanism for improving catalytic activities of N-doped carbon nanotube arrays in rechargeable Zinc-Air battery. Adv. Energy Mater.2018, 8, 1800480.

    Google Scholar 

  43. Chen, Y. M.; Li, X. Y.; Zhou, X. Y.; Yao, H. M.; Huang, H. T.; Mai, Y. W.; Zhou, L. M. Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials. Energy Environ. Sci.2014, 7, 2689–2696.

    CAS  Google Scholar 

  44. Zhu, C. Y.; Kim, C.; Aoki, Y.; Habazaki, H. Nitrogen-doped hierarchical porous carbon architecture incorporated with cobalt nanoparticles and carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Adv. Mater. Interfaces2017, 4, 1700583.

    Google Scholar 

  45. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem.2015, 87, 1051–1069.

    CAS  Google Scholar 

  46. Liu, Q.; Wang, Y. B.; Dai, L. M.; Yao, J. N. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-Air batteries. Adv. Mater.2016, 28, 3000–3006.

    CAS  Google Scholar 

  47. Zeng, M.; Liu, Y. L.; Zhao, F. P.; Nie, K. Q.; Han, N.; Wang, X. X.; Huang, W. J.; Song, X. N.; Zhong, J.; Li, Y. G. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries. Adv. Funct. Mater.2016, 26, 4397–4404.

    CAS  Google Scholar 

  48. Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Tang, H. D.; Mamat, X.; Wagberg, T.; Hu, G. Z.; Guo, S. J. Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy2017, 35, 9–16.

    CAS  Google Scholar 

  49. Nam, G.; Son, Y.; Park, S. O.; Jeon, W. C.; Jang, H.; Park, J.; Chae, S.; Yoo, Y.; Ryu, J.; Kim, M. G. et al. A ternary Ni46Co40Fe14 nanoalloy-based oxygen electrocatalyst for highly efficient rechargeable zinc-air batteries. Adv. Mater.2018, 30, 1803372.

    Google Scholar 

  50. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc.2017, 139, 17281–17284.

    CAS  Google Scholar 

  51. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed.2017, 129, 7041–7045.

    Google Scholar 

  52. Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed.2016, 128, 10958–10963.

    Google Scholar 

  53. Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solidstate zinc-air battery. Adv. Energy Mater.2017, 7, 1602420.

    Google Scholar 

  54. Han, S. C.; Hu, X. Y.; Wang, J. C.; Fang, X. S.; Zhu, Y. F. Novel route to Fe-based cathode as an efficient bifunctional catalysts for rechargeable Zn-Air battery. Adv. Energy Mater.2018, 8, 1800955.

    Google Scholar 

  55. Jiang, H.; Liu, Y.; Li, W. Z.; Li, J. Co nanoparticles confined in 3D nitrogen-doped porous carbon foams as bifunctional electrocatalysts for long-life rechargeable Zn-Air batteries. Small2018, 14, 1703739.

    Google Scholar 

  56. Yang, D. J.; Zhang, L. J.; Yan, X. C.; Yao, X. D. Recent progress in oxygen electrocatalysts for zinc-air batteries. Small Methods2017, 1, 1700209.

    Google Scholar 

  57. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res.2015, 8, 23–39.

    CAS  Google Scholar 

  58. Stern, M.; Geary, A. L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc.1957, 104, 56.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21701101), the National Key Research and Development Project (Nos. 2018YFE0118200 and 2016YFF0204402), the Fundamental Research Funds for the Central Universities (No. 18CX06063A), the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China, the Shandong Key Research and Development Project (No. 2019JZZY010506), the Shandong Scientific Research Awards Foundation for Outstanding Young Scientists (No. ZR2018JL010), the Shandong Joint Fund of Outstanding Young Talents (No. ZR2017BB018), the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2017RCJJ059), and the Program for Tsingtao Al-ion Power and Energy-Storage Battery Research Team in the University (No. 17-2-1-1-zhc).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxin Zhang or Zifeng Yan.

Electronic supplementary material

12274_2020_2751_MOESM1_ESM.pdf

Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Kumar, A., Ma, M. et al. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 13, 1090–1099 (2020). https://doi.org/10.1007/s12274-020-2751-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2751-7

Keywords

Navigation