Skip to main content
Log in

Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-quality and large-scale growth of monolayer molybdenum disulfide (MoS2) has caught intensive attention because of its potential in many applications due to unique electronic properties. Here, we report the wafer-scale growth of high-quality monolayer MoS2 on singlecrystalline sapphire and also on SiO2 substrates by a facile metal-organic chemical vapor deposition (MOCVD) method. Prior to growth, an aqueous solution of sodium molybdate (Na2MoO4) is spun onto the substrates as the molybdenum precursor and diethyl sulfide ((C2H5)2S) is used as the sulfur precursor during the growth. The grown MoS2 films exhibit crystallinity, good electrical performance (electron mobility of 22 cm2·V-1·s-1) and structural continuity maintained over the entire wafer. The sapphire substrates are reusable for subsequent growth. The same method is applied for the synthesis of tungsten disulfide (WS2). Our work provides a facile, reproducible and cost-efficient method for the scalable fabrication of high-quality monolayer MoS2 for versatile applications, such as electronic and optoelectronic devices as well as the membranes for desalination and power generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725–728.

    Article  CAS  Google Scholar 

  2. Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.

    Article  CAS  Google Scholar 

  3. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  4. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  CAS  Google Scholar 

  5. Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492.

    Article  CAS  Google Scholar 

  6. Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197–200.

    Article  CAS  Google Scholar 

  7. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, G. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  CAS  Google Scholar 

  8. Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

    Article  CAS  Google Scholar 

  9. Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomiclayer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

    Article  CAS  Google Scholar 

  10. Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

    Article  CAS  Google Scholar 

  11. Lin, Y. C.; Zhang, W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4, 6637–6641.

    Article  CAS  Google Scholar 

  12. Heyne, M. H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I. P.; Caymax, M.; de Marneffe, J. F. et al. Multilayer MoS2 growth by metal and metal oxide sulfurization. J. Mater. Chem. C 2016, 4, 1295–1304.

    Article  CAS  Google Scholar 

  13. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  CAS  Google Scholar 

  14. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

    Article  CAS  Google Scholar 

  15. Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y. C.; Krasnozhon, D.; Chen, M. W. et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611–4620.

    Article  CAS  Google Scholar 

  16. Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z. Z.; Li, X. M.; Yu, H.; Zhu, X. T.; Yang, R.; Shi, D. X. et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632–15635.

    Article  CAS  Google Scholar 

  17. Li, S. S.; Lin, Y. C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z. H.; Shen, Y. D.; Tang, D. M.; Wang, J. Y.; Zhang, Q. et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535–542.

    Article  CAS  Google Scholar 

  18. Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    Article  CAS  Google Scholar 

  19. Kumar, V. K.; Dhar, S.; Choudhury, T. H.; Shivashankar, S. A.; Raghavan, S. A predictive approach to CVD of crystalline layers of TMDs: The case of MoS2. Nanoscale 2015, 7, 7802–7810.

    Article  Google Scholar 

  20. Kim, H.; Ovchinnikov, D.; Deiana, D.; Unuchek, D.; Kis, A. Suppressing nucleation in metal-organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 2017, 17, 5056–5063.

    Article  CAS  Google Scholar 

  21. Cheng, F.; Hu, Z. X.; Xu, H.; Shao, Y.; Su, J.; Chen, Z.; Ji, W.; Loh, K. P. Interface engineering of Au(111) for the growth of 1T’-MoSe2. ACS Nano 2019, 13, 2316–2323.

    CAS  Google Scholar 

  22. Kim, H.; Han, G. H.; Yun, S. J.; Zhao, J.; Keum, D. H.; Jeong, H. Y.; Ly, T. H.; Jin, Y.; Park, J. H.; Moon, B. H. et al. Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology 2017, 28, 36LT01.

    Article  Google Scholar 

  23. Song, J. G.; Ryu, G. H.; Kim, Y.; Woo, W. J.; Ko, K. Y.; Kim, Y.; Lee, C.; Oh, I. K.; Park, J.; Lee, Z. et al. Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride. Nanotechnology 2017, 28, 465103.

    Article  Google Scholar 

  24. Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L.Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

    Article  Google Scholar 

  25. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    Article  CAS  Google Scholar 

  26. Chou, C-H. S. J.; Bitter, P.; Longstreth, J. Toxicological Profile for Hydrogen Sulfide; U. S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Washington, DC, 2006.

    Google Scholar 

  27. Boandoh, S.; Choi, S. H.; Park, J. H.; Park, S. Y.; Bang, S.; Jeong, M. S.; Lee, J. S.; Kim, H. J.; Yang, W.; Choi, J. Y. et al. A novel and facile route to synthesize atomic-layered MoS2 film for large-area electronics. Small 2017, 13, 1701306.

    Article  Google Scholar 

  28. Feng, Y. L.; Zhang, K. L.; Wang, F.; Liu, Z. W.; Fang, M. X.; Cao, R. R.; Miao, Y. P.; Yang, Z. C.; Mi, W.; Han, Y. M. et al. Synthesis of large-area highly crystalline monolayer molybdenum disulfide with tunable grain size in a H2 atmosphere. ACS Appl. Mater. Interfaces 2015, 7, 22587–22593.

    Article  CAS  Google Scholar 

  29. Li, X.; Li, X. M.; Zang, X. B.; Zhu, M.; He, Y. J.; Wang, K. L.; Xie, D.; Zhu, H. W. Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers. Nanoscale 2015, 7, 8398–8404.

    Article  CAS  Google Scholar 

  30. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  CAS  Google Scholar 

  31. Yu, H.; Liao, M. Z.; Zhao, W. J.; Liu, G. D.; Zhou, X. J.; Wei, Z.; Xu, X. Z.; Liu, K. H.; Hu, Z. H.; Deng, K. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001–12007.

    Article  CAS  Google Scholar 

  32. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  33. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  34. Baker, M. A.; Gilmore, R.; Lenardi, C.; Gissler, W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl. Surf. Sci. 1999, 150, 255–262.

    Article  CAS  Google Scholar 

  35. Wang, H. W.; Skeldon, P.; Thompson, G. E. XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions. Surf. Coat. Technol. 1997, 91, 200–207.

    Article  CAS  Google Scholar 

  36. Richter, B.; Kuhlenbeck, H.; Freund, H. J.; Bagus, P. S. cluster core-level binding-energy shifts: The role of lattice strain. Phys. Rev. Lett. 2004, 93, 026805.

    Article  CAS  Google Scholar 

  37. Dumcenco, D.; Ovchinnikov, D.; Sanchez, O. L.; Gillet, P.; Alexander, D. T. L.; Lazar, S.; Radenovic, A.; Kis, A. Large-area MoS2 grown using H2S as the sulphur source. 2D Mater 2015, 2, 044005.

    Article  Google Scholar 

  38. Close, R.; Chen, Z.; Shibata, N.; Findlay, S. D. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy 2015, 159, 124–137.

    Article  CAS  Google Scholar 

  39. Lazić, I.; Bosch, E. G. T.; Lazar, S. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 2016, 160, 265–280.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the CCMX project (“Large Area Growth of 2D Materials for Device Integration”), and was also funded from a sponsored research agreement from Hoffmann- LaRoche. Devices fabrication was partially carried out at the Center for Micro/nanotechnology (CMi) at École Polytechnique Fédérale de Lausanne (EPFL). We thank the Centre Interdisciplinaire de Microscopie Electronique (CIME) at EPFL for access to electron microscopes. H. K., Y. F. Z and A. K. acknowledge funding from the European Union — Horizon H2020 Future and Emerging Technologies under grant agreements No. 696656 and 785219 (Graphene Flagship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanyao Cun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cun, H., Macha, M., Kim, H. et al. Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 12, 2646–2652 (2019). https://doi.org/10.1007/s12274-019-2502-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2502-9

Keywords

Navigation