Skip to main content
Log in

Polarity control of carrier injection for nanowire feedback field-effect transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We present polarity control of the carrier injection for a feedback field-effect transistor (FBFET) with a selectively thinned p+-i-n+ Si nanowire (SiNW) channel and two separate gates. The SiNW FBFET can be reconfigured in the p- or n-channel operation modes via simple control of electric signals. The two separate gates induce potential barriers in the SiNW channel for selective control of the carrier injection. In contrast to previously reported reconfigurable transistors, our transistor features symmetry of the electrical characteristics for the p- and n-channel operation modes. Positive-feedback operation of the SiNW FBFET provides superior switching characteristics for the p- and n-type configurations, including the on/off ratios (∼ 105) and subthreshold swings (1.36-1.78 mV/dec). This novel transistor is a promising candidate for reconfigurable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, S. D.; Francis, R. J.; Rose, J.; Vranesic, Z. G. Field-programmable Gate Arrays; Springer: Boston, MA, 1992.

    Book  Google Scholar 

  2. Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science, 2003. 302, 1377–1379.

    Article  CAS  Google Scholar 

  3. Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature, 2008. 453, 80–83.

    Article  CAS  Google Scholar 

  4. Xia, Q. F.; Robinett, W.; Cumbie, M. W.; Banerjee, N.; Cardinali, T. J.; Yang, J. J.; Wu, W.; Li, X. M.; Tong, W. M.; Strukov, D. B. et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett., 2009. 9, 3640–3645.

    Article  CAS  Google Scholar 

  5. Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol., 2013. 8, 13–24.

    Article  CAS  Google Scholar 

  6. Heinzig, A.; Slesazeck, S.; Kreupl, F.; Mikolajick, T.; Weber, W. M. Reconfigurable silicon nanowire transistors. Nano Lett., 2012. 12, 119–124.

    Article  CAS  Google Scholar 

  7. Trommer, J.; Heinzig, A.; Mühle, U.; Lüffler, M.; Winzer, A.; Jordan, P. M.; Beister, J.; Baldauf, T.; Geidel, M.; Adolphi, B. et al. Enabling energy efficiency and polarity control in germanium nanowire transistors by individually gated nanojunctions. ACS Nano, 2017. 11, 1704–1711.

    Article  CAS  Google Scholar 

  8. Ernst, T. Controlling the polarity of silicon nanowire transistors. Science 2013. 340, 1414–1415.

    Article  CAS  Google Scholar 

  9. Zhang, J.; de Marchi, M.; Sacchetto, D.; Gaillardon, P. E.; Leblebici, Y.; de Micheli, G. Polarity-controllable silicon nanowire transistors with dual threshold voltages. IEEE Trans. Electron Devices, 2014. 61, 3654–3660.

    Article  CAS  Google Scholar 

  10. Heinzig, A.; Mikolajick, T.; Trommer, J.; Grimm, D.; Weber, W. M. Dually active silicon nanowire transistors and circuits with equal electron and hole transport. Nano Lett., 2013. 13, 4176–4181.

    Article  CAS  Google Scholar 

  11. Simon, M.; Heinzig, A.; Trommer, J.; Baldauf, T.; Mikolajick, T.; Weber, W. M. Top-down technology for reconfigurable nanowire FETs with symmetric on-currents. IEEE Trans. Nanotechnol., 2017. 16, 812–819.

    Article  CAS  Google Scholar 

  12. Glassner, S.; Zeiner, C.; Periwal, P.; Baron, T.; Bertagnolli, E.; Lugstein, A. Multimode silicon nanowire transistors. Nano Lett., 2014. 14, 6699–6703.

    Article  CAS  Google Scholar 

  13. Jhaveri, R.; Nagavarapu, V.; Woo, J. C. S. Asymmetric Schottky tunneling source SOI MOSFET design for mixed-mode applications. IEEE Trans. Electron Devices, 2009. 56, 93–99.

    Article  CAS  Google Scholar 

  14. Kim, M.; Jeon, Y.; Kim, Y.; Kim, S. Impact-ionization and tunneling FET characteristics of dual-functional devices with partially covered intrinsic regions. IEEE Trans. Nanotechnol., 2015. 14, 633–637.

    Article  CAS  Google Scholar 

  15. Padilla, A.; Yeung, C. W.; Shin, C.; Hu, C. M.; Liu, T. J. K. Feedback FET: A novel transistor exhibiting steep switching behavior at low bias voltages. I. Proceedings of 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2008, pp 1–4.

    Google Scholar 

  16. Yeung, C. W.; Padilla, A.; Liu, T. J. K.; Hu, C. M. Programming characteristics of the steep turn-on/off feedback FET (FBFET). I. Proceedings of 2009 Symposium on VLSI Technology, Honolulu, HI, USA, 2009, pp 176–177.

    Google Scholar 

  17. Wan, J.; Cristoloveanu, S.; Le Royer, C.; Zaslavsky, A. A feedback silicon-on-insulator steep switching device with gate-controlled carrier injection. Solid State Electron., 2012. 76, 109–111.

    Article  CAS  Google Scholar 

  18. Wan, J.; Le Royer, C.; Zaslavsky, A.; Cristoloveanu, S. Z2-FET: A zero-slope switching device with gate-controlled hysteresis. I. Proceedings of Technical Program of 2012 VLSI Technology. System and Application, Hsinchu, China, 2012, pp 1–4.

    Google Scholar 

  19. Wan, J.; Le Royer, C.; Zaslavsky, A.; Cristoloveanu, S. A systematic study of the sharp-switching Z2-FET device: From mechanism to modeling and compact memory applications. Solid State Electron., 2013. 90, 2–11.

    Article  CAS  Google Scholar 

  20. Jeon, Y.; Kim, M.; Lim, D.; Kim, S. Steep subthreshold swing n- and p-channel operation of bendable feedback field-effect transistors with p+-i-n+ nanowires by dual-top-gate voltage modulation. Nano Lett., 2015. 15, 4905–4913.

    Article  CAS  Google Scholar 

  21. Zhang, J.; de Marchi, M.; Gaillardon, P. E.; de Micheli, G. A Schottkybarrier silicon FinFET with 6.0 mV/dec subthreshold slope over 5 decades of current. I. Proceedings of 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2014, pp 13.4.1–13.4.4.

    Chapter  Google Scholar 

  22. Lu, Z.; Collaert, N.; Aoulaiche, M.; de Wachter, B.; de Keersgieter, A.; Fossum, J. G.; Altimime, L.; Jurczak, M. Realizing super-steep subthreshold slope with conventional FDSOI CMOS at low-bias voltages. I. Proceedings of 2010 International Electron Devices Meeting, San Francisco, CA, USA, 2010, pp 16.6.1–16.6.3.

    Google Scholar 

  23. Jeon, Y.; Kim, M.; Kim, Y.; Kim, S. Switching characteristics of nanowire feedback field-effect transistors with nanocrystal charge spacers on plastic substrates. ACS Nano, 2014. 8, 3781–3787.

    Article  CAS  Google Scholar 

  24. Lee, B. H.; Ahn, D. C.; Kang, M. H.; Jeon, S. B.; Choi, Y. K. Vertically integrated nanowire-based unified memory. Nano Lett., 2016. 16, 5909–5916.

    Article  CAS  Google Scholar 

  25. Lim, D.; Kim, M.; Kim, Y.; Kim, S. Memory characteristics of silicon nanowire transistors generated by weak impact ionization. Sci. Rep., 2017. 7, 12436.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the MOTIE (Ministry of Trade, Industry & Energy) (10067791) and KSRC (Korea Semiconductor Research Consortium) support program for the development of the future semiconductor device, in part by the Mid-career Researcher Program (No. NRF-2016R1E1A1A02920171), the Brain Korea 21 Plus Project in 2019 through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning and the Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangsig Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, D., Kim, S. Polarity control of carrier injection for nanowire feedback field-effect transistors. Nano Res. 12, 2509–2514 (2019). https://doi.org/10.1007/s12274-019-2477-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2477-6

Keywords

Navigation