Skip to main content
Log in

Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Direct growth of large area uniform graphene on functional insulating materials is essential for engineering versatile applications of graphene. However, the existing synthesis approaches can hardly avoid the generation of non-uniform multilayer graphene along the gas flow direction, affording huge challenges for further scaling up. Herein, by exploiting the molten state of soda-lime glass, we have accomplished the direct growth of large area uniform (up to 30 cm × 6 cm) graphene via a facile chemical vapor deposition route on low cost soda-lime glass. The use of molten glass eliminates the chemically active sites (surface corrugations, scratches, defects), and improves the mobility of carbon precursors, affording uniform nucleation and growth of monolayer graphene. Intriguingly, thus-obtained graphene acts as an ideal coating layer for the surface crystallographic modification of soda-lime glass, making it epitaxy substrates for synthesizing high-quality PbI2 nanoplates and continues films. Accordingly, a prototype photodetector was fabricated to present excellent photoelectrical properties of high responsivity (∼ 600 on/off current ratio) and fast response speed (18 µs). This work hereby paves ways for the batch production and the direct applications of graphene glass as platforms for constructing high performance electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meric, I.; Han, M. Y.; Young, A. F.; Ozyilmaz, B.; Kim, P.; Shepard, K. L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659.

    Article  Google Scholar 

  2. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  Google Scholar 

  3. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    Article  Google Scholar 

  4. Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67.

    Article  Google Scholar 

  5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  6. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  Google Scholar 

  7. Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Graphene glass: direct growth of graphene on traditional glasses. Acta Phys. Chim. Sin. 2016, 32, 14–27.

    Google Scholar 

  8. Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rüemmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.

    Article  Google Scholar 

  9. Chen, Z. L.; Guan, B. L.; Chen, X. D.; Zeng, Q.; Lin, L.; Wang, R. Y.; Priydarshi, M. K.; Sun, J. Y.; Zhang, Z. P.; Wei, T. B. et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano. Res. 2016, 9, 3048–3055.

    Article  Google Scholar 

  10. Plummer, J. Molten bed. Nat. Mater. 2015, 14, 1186.

    Article  Google Scholar 

  11. Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839–7846.

    Article  Google Scholar 

  12. Li, G.; Huang, S. H.; Li, Z. Y. Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys. 2015, 17, 22832–22836.

    Article  Google Scholar 

  13. Chen, X. D.; Chen, Z. L.; Jiang, W. S.; Zhang, C. H.; Sun, J. Y.; Wang, H. H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H. et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater. 2017, 29, 1603428.

    Article  Google Scholar 

  14. Han, G. H.; Güeneş, F.; Bae, J. J.; Kim, E. S.; Chae, S. J.; Shin, H. J.; Choi, J. Y.; Pribat, D.; Lee, Y. H. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 2011, 11, 4144–4148.

    Article  Google Scholar 

  15. Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Priydarshi, M. K.; Bachmatiuk, A. et al. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016, 10, 11136–11144.

    Article  Google Scholar 

  16. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  17. Shon, J. W.; Ohta, J.; Ueno, K.; Kobayashi, A.; Fujioka, H. Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering. Sci. Rep. 2014, 4, 5325.

    Article  Google Scholar 

  18. Chung, K.; Lee, C. H.; Yi, G. C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 2010, 330, 655–657.

    Article  Google Scholar 

  19. Kumaresan, V.; Largeau, L.; Madouri, A.; Glas, F.; Zhang, H. Z.; Oehler, F.; Cavanna, A.; Babichev, A.; Travers, L.; Gogneau, N. et al. Epitaxy of GaN nanowires on graphene. Nano Lett. 2016, 16, 4895–4902.

    Article  Google Scholar 

  20. Geng, D.C.; Wu, B.; Guo, Y.L.; Huang, L.P.; Xue, Y.Z.; Chen, J.Y.; Yu, G.; Jiang, L.; Hu, W.P.; Liu, Y.Q. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. USA 2012, 109, 7992–7996.

    Article  Google Scholar 

  21. Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.

    Article  Google Scholar 

  22. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238–242.

    Article  Google Scholar 

  23. Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548–17551.

    Article  Google Scholar 

  24. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  25. Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Castro Neto, A. H.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

    Article  Google Scholar 

  26. Song, H. J.; Son, M.; Park, C.; Lim, H.; Levendorf, M. P.; Tsen, A. W.; Park, J.; Choi, H. C. Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale 2012, 4, 3050–3054.

    Article  Google Scholar 

  27. Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128–4133.

    Article  Google Scholar 

  28. Deng, H.; Yang, X. K.; Dong, D. D.; Li, B.; Yang, D.; Yuan, S. J.; Qiao, K. K.; Cheng, Y. B.; Tang, J.; Song, H. S. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett. 2015, 15, 7963–7969.

    Article  Google Scholar 

  29. Tian, Y. D.; Yan, J. C.; Zhang, Y.; Chen, X.; Guo, Y. N.; Cong, P. P.; Sun, L. L.; Wang, Q. J.; Guo, E. Q.; Wei, X. C. et al. Stimulated emission at 288 nm from silicon-doped AlGaN-based multiple-quantum-well laser. Opt. Express 2015, 23, 11334–11340.

    Article  Google Scholar 

  30. Zheng, W.; Zhang, Z. J.; Lin, R. C.; Xu, K.; He, J.; Huang, F. High-crystalline 2D layered PbI2 with ultrasmooth surface: Liquid-phase synthesis and application of high-speed photon detection. Adv. Electron. Mater. 2016, 2, 1600291.

    Article  Google Scholar 

  31. Roth, S.; Willig, W. R. Lead iodide nuclear particle detectors. Appl. Phys. Lett. 1971, 18, 328–330.

    Article  Google Scholar 

  32. Lei, S. D.; Wen, F. F.; Ge, L. H.; Najmaei, S.; George, A.; Gong, Y. J.; Gao, W. L.; Jin, Z. H.; Li, B.; Lou, J. et al. An atomically layered InSe avalanche photodetector. Nano Lett. 2015, 15, 3048–3055.

    Article  Google Scholar 

  33. Yang, S. X.; Li, Y.; Wang, X. Z.; Huo, N. J.; Xia, J. B.; Li, S. S.; Li, J. B. High performance few-layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale 2014, 6, 2582–2587.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Electron Microscopy Laboratory in Peking University for the use of Cs corrected electron microscope. This work was financially supported by the National Basic Research Program of China (No. 2016YFA0200103), the National Natural Science Foundation of China (Nos. 51432002 and 51290272), and the Beijing Municipal Science and Technology Planning Project (No. Z161100002116020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfeng Zhang or Zhongfan Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Ci, H., Tan, Z. et al. Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. Nano Res. 12, 1888–1893 (2019). https://doi.org/10.1007/s12274-019-2453-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2453-1

Keywords

Navigation