Skip to main content
Log in

Atomistic insight into ordered defect superstructures at novel grain boundaries in CuO nanosheets: From structures to electronic properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Determining atomistic structures of grain boundaries (GBs) is essential to understand structure–property interplay in oxides. Here, different GB superstructures in CuO nanosheets, including \((11\bar1)\) and (114) twinning boundaries (TBs) and (002)/(223) GB, are investigated. Unlike the lower-energy stoichiometric \((11\bar1)\) TB, both experimental and first-principles investigations reveal a severe segregation of Cu and O vacancies and a nonstoichiometric property at (114) TB, which may facilitate ionic transportation and provide space for elemental segregation. More importantly, the calculated electronic structures have shown the increased conductivity as well as the unanticipated magnetism in both (114) TB and (002)/(223) GB. These findings could contribute to the race towards the property-directing structural design by GB engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, H. H.; Zheng, H.; Li, L.; Jia, S. F.; Meng, S.; Cao, F.; Lv, Y. H.; Zhao, D. S.; Wang, J. B. Surface-coating-mediated electrochemical performance in CuO nanowires during the sodiation-desodiation cycling. Adv. Mater. Interfaces 2018, 5, 1701255.

    Article  Google Scholar 

  2. Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386.

    Article  Google Scholar 

  3. Liu, H. H.; Cao, F.; Zheng, H.; Sheng, H. P.; Li, L.; Wu, S. J.; Liu, C.; Wang, J. B. In situ observation of the sodiation process in CuO nanowires. Chem. Commun. 2015, 51, 10443–10446.

    Article  Google Scholar 

  4. Thongbai, P.; Maensiri, S.; Yamwong, T. Effects of grain, grain boundary, and dc electric field on giant dielectric response in high purity CuO ceramics. J. Appl. Phys. 2008, 104, 036107.

    Article  Google Scholar 

  5. Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017, 1, 0052.

    Article  Google Scholar 

  6. Feng, Y. Z.; Zheng, X. L. Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Lett. 2010, 10, 4762–4766.

    Article  Google Scholar 

  7. Lu, L.; Yan, X.; Wang, J. B.; Zheng, H.; Hu, X. Y.; Tang, Y. W.; Jia, Z. Y. Oriented NiO nanosheets with regular hexagonal nanopores. J. Phys. Chem. C 2012, 116, 14638–14643.

    Article  Google Scholar 

  8. Luo, L. J.; Lv, G.; Li, B. H.; Hu, X. Y.; Jin, L.; Wang, J. B.; Tang, Y. W. Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application. Thin Solid Films 2010, 518, 5146–5152.

    Article  Google Scholar 

  9. Zheng, H.; Wang, J.; Huang, J. Y.; Wang, J. B.; Zhang, Z.; Mao, S. X. Dynamic process of phase transition from wurtzite to zinc blende structure in InAs nanowires. Nano Lett. 2013, 13, 6023–6027.

    Article  Google Scholar 

  10. Wu, S. J.; Cao, F.; Zheng, H.; Sheng, H. P.; Liu, C.; Liu, Y.; Zhao, D. S.; Wang, J. B. Fabrication of faceted nanopores in magnesium. Appl. Phys. Lett. 2013, 103, 243101.

    Article  Google Scholar 

  11. Jia, S. F.; Zheng, H.; Sang, H. Q.; Zhang, W. J.; Zhang, H.; Liao, L.; Wang, J. B. Self-assembly of KxWO3 nanowires into nanosheets by an oriented attachment mechanism. ACS Appl. Mater. Interfaces 2013, 5, 10346–10351.

    Article  Google Scholar 

  12. Zhou, J. P.; Zhao, D. S.; Wang, R. H.; Sun, Z. F.; Wang, J. B.; Gui, J. N.; Zheng, O. In situ observation of ageing process and new morphologies of continuous precipitates in AZ91 magnesium alloy. Mater. Lett. 2007, 61, 4707–4710.

    Article  Google Scholar 

  13. Tang, Y. W.; Jia, Z. Y.; Jiang, Y.; Li, L. Y.; Wang, J. B. Simple template-free solution route for the synthesis of Ni(SO4)0.3(OH)1.4 nanobelts and their thermal degradation. Nanotechnology 2006, 17, 5686–5690.

    Article  Google Scholar 

  14. Jang, H. W.; Ortiz, D.; Baek, S. H.; Folkman, C. M.; Das, R. R.; Shafer, P.; Chen, Y. B.; Nelson, C. T.; Pan, X. Q.; Ramesh, R. et al. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO thin films. Adv. Mater. 2009, 21, 817–823.

    Article  Google Scholar 

  15. Wang, J. B.; Li, L. Y.; Xiong, D. X.; Wang, R. H.; Zhao, D. S.; Min, C. P.; Yu, Y.; Ma, L. L. High spatially resolved morphological, structural and spectroscopical studies on copper oxide nanocrystals. Nanotechnology 2007, 18, 075705.

    Article  Google Scholar 

  16. Nie, A. M.; Gan, L. Y.; Cheng, Y. C.; Li, Q. Q.; Yuan, Y. F.; Mashayek, F.; Wang, H. T.; Klie, R.; Schwingenschlogl, U.; Shahbazian-Yassar, R. Twin boundary-assisted lithium ion transport. Nano Lett. 2015, 15, 610–615.

    Article  Google Scholar 

  17. Moriwake, H.; Kuwabara, A.; Fisher, C. A. J.; Huang, R.; Hitosugi, T.; Ikuhara, Y. H.; Oki, H.; Ikuhara, Y. First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material, LiCoO2. Adv. Mater. 2013, 25, 618–622.

    Article  Google Scholar 

  18. Long, H.; Fang, G. J.; Li, S. Z.; Mo, X. M.; Wang, H. N.; Huang, H. H.; Jiang, Q. K.; Wang, J. B.; Zhao, X. Z. A ZnO/ZnMgO multiple-quantumwell ultraviolet random laser diode. IEEE Electron Dev. Lett. 2011, 32, 54–56.

    Article  Google Scholar 

  19. Ikuhara, Y. Grain boundary atomic structures and light-element visualization in ceramics: Combination of Cs-corrected scanning transmission electron microscopy and first-principles calculations. J. Electron Microsc. 2011, 60, S173–S188.

    Google Scholar 

  20. Buban, J. P.; Matsunaga, K.; Chen, J.; Shibata, N.; Ching, W. Y.; Yamamoto, T.; Ikuhara, Y. Grain boundary strengthening in alumina by rare earth impurities. Science 2006, 311, 212–215.

    Article  Google Scholar 

  21. Li, B. H.; Luo, L. J.; Xiao, T.; Hu, X. Y.; Lu, L.; Wang, J. B.; Tang, Y. W. Zn2SnO4–SnO2 heterojunction nanocomposites for dye-sensitized solar cells. J. Alloys Compd. 2011, 509, 2186–2191.

    Article  Google Scholar 

  22. Liu, S. Y.; Choy, W. C. H.; Jin, L.; Leung, Y. P.; Zheng, G. P.; Wang, J. B.; Soh, A. K. Triple-crystal zinc selenide nanobelts. J. Phys. Chem. C 2007, 111, 9055–9059.

    Article  Google Scholar 

  23. Jin, L.; Choy, W. C. H.; Leung, Y. P.; Yuk, T. I.; Ong, H. C.; Wang, J. B. Synthesis and analysis of abnormal wurtzite ZnSe nanowheels. J. Appl. Phys. 2007, 102, 044302.

    Article  Google Scholar 

  24. Tu, C. H.; Chang, C. C.; Wang, C. H.; Fang, H. C.; Huang, M. R. S.; Li, Y. C.; Chang, H. J.; Lu, C. H.; Chen, Y. C.; Wang, R. C. et al. Resistive memory devices with high switching endurance through single filaments in Bi-crystal CuO nanowires. J. Alloys Compd. 2014, 615, 754–760.

    Article  Google Scholar 

  25. Liebscher, C. H.; Stoffers, A.; Alam, M.; Lymperakis, L.; Cojocaru-Mirédin, O.; Gault, B.; Neugebauer, J.; Dehm, G.; Scheu, C.; Raabe, D. Strain-induced asymmetric line segregation at faceted Si grain boundaries. Phys. Rev. Lett. 2018, 121, 015702.

    Article  Google Scholar 

  26. Herbig, M.; Raabe, D.; Li, Y. J.; Choi, P.; Zaefferer, S.; Goto, S. Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 2014, 112, 126103.

    Article  Google Scholar 

  27. Deuermeier, J.; Wardenga, H. F.; Morasch, J.; Siol, S.; Nandy, S.; Calmeiro, T.; Martins, R.; Klein, A.; Fortunato, E. Highly conductive grain boundaries in copper oxide thin films. J. Appl. Phys. 2016, 119, 235303.

    Article  Google Scholar 

  28. Younas, M.; Nadeem, M.; Idrees, M.; Akhtar, M. J. Jahn-Teller assisted polaronic hole hopping as a charge transport mechanism in CuO nanograins. Appl. Phys. Lett. 2012, 100, 152103.

    Article  Google Scholar 

  29. Putjuso, T.; Manyum, P.; Yamwong, T.; Thongbai, P.; Maensiri, S. Effect of annealing on electrical responses of electrode and surface layer in giant-permittivity CuO ceramic. Solid State Sci. 2011, 13, 2007–2010.

    Article  Google Scholar 

  30. Sheng, H. P.; Zheng, H.; Jia, S. F.; Li, L.; Cao, F.; Wu, S. J.; Han, W.; Liu, H. H.; Zhao, D. S.; Wang, J. B. Twin structures in CuO nanowires. J. Appl. Cryst. 2016, 49, 462–467.

    Article  Google Scholar 

  31. Cao, F.; Jia, S. F.; Zheng, H.; Zhao, L. L.; Liu, H. H.; Li, L.; Zhao, L. G.; Hu, Y. M.; Gu, H. S.; Wang, J. B. Thermal-induced formation of domain structures in CuO nanomaterials. Phys. Rev. Materials 2017, 1, 053401.

    Article  Google Scholar 

  32. Koch C. T. Determination of core structure periodicity and point defect density along dislocations. Ph.D. Dissertation, Arizona State University, Tempe, AZ, USA, 2002.

    Google Scholar 

  33. Malis, T.; Cheng, S. C.; Egerton, R. F. EELS log-ratio technique for specimenthickness measurement in the TEM. J. Electron Microsc. Technol. 1988, 8, 193–200.

    Article  Google Scholar 

  34. Raebiger, H.; Lany, S.; Zunger, A. Origins of the p-type nature and cation deficiency in Cu2O and related materials. Phys. Rev. B 2007, 76, 045209.

    Article  Google Scholar 

  35. Wu, D. X.; Zhang, Q. M.; Tao, M. LSDA+U study of cupric oxide: Electronic structure and native point defects. Phys. Rev. B 2006, 73, 235206.

    Article  Google Scholar 

  36. Sun, R.; Wang, Z. C.; Saito, M.; Shibata, N.; Ikuhara, Y. Atomistic mechanisms of nonstoichiometry-induced twin boundary structural transformation in titanium dioxide. Nat. Commun. 2015, 6, 7120.

    Article  Google Scholar 

  37. Kingery, W. D. Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: I, grain-boundary characteristics, structure, and electrostatic potential. J. Am. Ceram. Soc. 1974, 57, 1–8.

    Article  Google Scholar 

  38. Bai, X. M.; Voter, A. F.; Hoagland, R. G.; Nastasi, M.; Uberuaga, B. P. Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 2010, 327, 1631–1634.

    Article  Google Scholar 

  39. Leapman, R. D.; Grunes, L. A.; Fejes, P. L. Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B 1982, 26, 614–635.

    Article  Google Scholar 

  40. Waddington, W. G; Rez, P.; Grant, I. P.; Humphreys, C. J. White lines in the L2, 3 electron-energy-loss and X-ray absorption spectra of 3d transition metals. Phys. Rev. B 1986, 34, 1467–1473.

    Article  Google Scholar 

  41. Graetz, J.; Ahn, C. C.; Ouyang, H.; Rez, P.; Fultz, B. White lines and d-band occupancy for the 3d transition-metal oxides and lithium transition-metal oxides. Phys. Rev. B 2004, 69, 235103.

    Article  Google Scholar 

  42. Sparrow, T. G.; Williams, B. G.; Rao, C. N. R.; Thomas, J. M. L3/L2 white-line intensity ratios in the electron energy-loss spectra of 3d transition-metal oxides. Chem. Phys. Lett. 1984, 108, 547–550.

    Article  Google Scholar 

  43. Ray, S. C. Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties. Sol. Energy Mater. Sol. Cells 2001, 68, 307–312.

    Article  Google Scholar 

  44. Koffyberg, F. P.; Benko, F. A. A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. J. Appl. Phys. 1982, 53, 1173–1177.

    Article  Google Scholar 

  45. Hardee, K. L.; Bard, A. J. Semiconductor electrodes: X. Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions. J. Electrochem. Soc. 1977, 124, 215–224.

    Google Scholar 

  46. Liao, Z. L.; Gauquelin, N.; Green, R. J.; Macke, S.; Gonnissen, J.; Thomas, S.; Zhong, Z. C.; Li, L.; Si, L.; van Aert, S. et al. Thickness dependent properties in oxide heterostructures driven by structurally induced metal–oxygen hybridization variations. Adv. Funct. Mater. 2017, 27, 1606717.

    Article  Google Scholar 

  47. Kan, D.; Aso, R.; Sato, R.; Haruta, M.; Kurata, H.; Shimakawa, Y. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nat. Mater. 2016, 15, 432–437.

    Article  Google Scholar 

  48. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  49. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  50. Mishra, A. K.; Roldan, A.; de Leeuw, N. H. CuO surfaces and CO2 activation: A dispersion-corrected DFT+U study. J. Phys. Chem. C 2016, 120, 2198–2214.

    Article  Google Scholar 

  51. Hu, J.; Li, D. D.; Lu, J. G.; Wu, R. Q. Effects on electronic properties of molecule adsorption on CuO surfaces and nanowires. J. Phys. Chem. C 2010, 114, 17120–17126.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51671148, 51271134, J1210061, 11674251, 51501132, and 51601132), the Hubei Provincial Natural Science Foundation of China (Nos. 2016CFB446 and 2016CFB155), the Fundamental Research Funds for the Central Universities, the CERS-1-26 (CERSChina Equipment and Education Resources System), the China Postdoctoral Science Foundation (No. 2014T70734), the Open Research Fund of Science and Technology on High Strength Structural Materials Laboratory (Central South University), and the Suzhou Science and Technology project (No. SYG201619).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Zheng or Jianbo Wang.

Electronic supplementary material

12274_2019_2354_MOESM1_ESM.pdf

Atomistic insight into ordered defect superstructures at novel grain boundaries in CuO nanosheets: From structures to electronic properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Li, L., Sheng, H. et al. Atomistic insight into ordered defect superstructures at novel grain boundaries in CuO nanosheets: From structures to electronic properties. Nano Res. 12, 1099–1104 (2019). https://doi.org/10.1007/s12274-019-2354-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2354-3

Keywords

Navigation