Skip to main content
Log in

Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Inspired by the clinically approved albumin based PTX formulation (Abraxane) and high-drug-loading dimeric prodrug tactics, herein we report a theranostic “Abraxane-like” prodrug formulation, which is comprised of human serum albumin (HSA), a paclitaxel (PTX) dimer bridged with thioether liner (PTX2-S), and photosensitizer IR780 iodide. Nanoparticles (NPs) with PTX2-S and IR780 as the core and HSA as the stealth shell are formed. Compared with HSA-based PTX clinical formulation (Abraxane), the dimeric molecules not only constitute the bulk structure of the particles, but also act as crossing agent, thus realizing drug loading content increasing from 6.6 wt.% to 48.7 wt.% with high loading efficiency (> 90%) and excellent stability in biological conditions. Importantly, the thioether linkage dually responds to the tumor redox heterogeneity and the NPs gradually releases the parent drug PTX for chemotherapy. Meanwhile, PTX2-S facilitates the encapsulation of IR780 iodide due to their π-π stacking interaction and IR780 iodide generates spatio-temporal hyperthermia under light irradiation to kill cancer cells for photothermal therapy. The described craft integrates the biomimetic trait of HSA, high drug loading, tumor redox heterogeneity-initiated on-demand drug release, and combination therapy into one formulation and the developed nanoparticles are promising for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sparreboom, A.; Scripture, C. D.; Trieu, V.; Williams, P. J.; De, T.; Yang, A.; Beals, B.; Figg, W. D.; Hawkins, M.; Desai, N. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin. Cancer Res. 2005, 11, 4136–4143.

    Article  Google Scholar 

  2. Contreras-Cáceres, R.; Leiva, M. C.; Ortiz, R.; Díaz, A.; Perazzoli, G.; Casado-Rodríguez, M. A.; Melguizo, C.; Baeyens, J. M.; López-Romero, J. M.; Prados, J. Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines. Nano Res. 2017, 10, 856–875.

    Article  Google Scholar 

  3. Bhattacharyya, J.; Bellucci, J. J.; Weitzhandler, I.; McDaniel, J. R.; Spasojevic, I.; Li, X. H.; Lin, C. C.; Chi, J. T. A.; Chilkoti, A. A paclitaxelloaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models. Nat. Commun. 2015, 6, 7939.

    Article  Google Scholar 

  4. Wang, Y.; Cheetham, A. G.; Angacian, G.; Su, H.; Xie, L. S.; Cui, H. G. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Del. Rev. 2017, 110–111, 112–126.

    Article  Google Scholar 

  5. Mitragotri, S.; Anderson, D. G.; Chen, X. Y.; Chow, E. K.; Ho, D.; Kabanov, A. V.; Karp, J. M.; Kataoka, K.; Mirkin, C. A.; Petrosko, S. H. et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 2015, 9, 6644–6654.

    Article  Google Scholar 

  6. Zhang, Y. M.; Zhang, N. Y.; Xiao, K.; Yu, Q.; Liu, Y. Photo-controlled reversible microtubule assembly mediated by paclitaxel-modified cyclodextrin. Angew. Chem., Int. Ed. 2018, 57, 8649–8653.

    Article  Google Scholar 

  7. Sun, B. Y.; Straubinger, R. M.; Lovell, J. F. Current taxane formulations and emerging cabazitaxel delivery systems. Nano Res. 2018, 11, 5193–5218.

    Article  Google Scholar 

  8. Xu, C. C.; Li, H.; Zhang, K. M.; Binzel, D. W.; Yin, H. R.; Chiu, W.; Guo, P. X. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Res. 2019, 12, 41–48.

    Article  Google Scholar 

  9. Green, M. R.; Manikhas, G. M.; Orlov, S.; Afanasyev, B.; Makhson, A. M.; Bhar, P.; Hawkins, M. J. Abraxane®, a novel Cremophor®-free, albuminbound particle form of paclitaxel for the treatment of advanced non-smallcell lung cancer. Ann. Oncol. 2006, 17, 1263–1268.

    Article  Google Scholar 

  10. Gradishar, W. J. Albumin-bound paclitaxel: A next-generation taxane. Expert Opin. Pharmacother. 2006, 7, 1041–1053.

    Article  Google Scholar 

  11. Desai, N.; Trieu, V.; Yao, Z. W.; Louie, L.; Ci, S.; Yang, A.; Tao, C. L.; De, T.; Beals, B.; Dykes, D. et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 2006, 12, 1317–1324.

    Article  Google Scholar 

  12. Kasai, H.; Murakami, T.; Ikuta, Y.; Koseki, Y.; Baba, K.; Oikawa, H.; Nakanishi, H.; Okada, M.; Shoji, M.; Ueda, M. et al. Creation of pure nanodrugs and their anticancer properties. Angew. Chem., Int. Ed. 2012, 51, 10315–10318.

    Article  Google Scholar 

  13. Cai, K. M.; He, X.; Song, Z. Y.; Yin, Q.; Zhang, Y. F.; Uckun, F. M.; Jiang, C.; Cheng, J. J. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J. Am. Chem. Soc. 2015, 137, 3458–3461.

    Article  Google Scholar 

  14. Huang, P.; Wang, D. L.; Su, Y.; Huang, W.; Zhou, Y. F.; Cui, D. X.; Zhu, X. Y.; Yan, D. Y. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 2014, 136, 11748–11756.

    Article  Google Scholar 

  15. Guo, X.; Wang, L.; Duval, K.; Fan, J.; Zhou, S. B.; Chen, Z. Dimeric drug polymeric micelles with acid-active tumor targeting and FRET-traceable drug release. Adv. Mater. 2018, 30, 1705436.

    Article  Google Scholar 

  16. Han, X. F.; Chen, J. L.; Jiang, M. J.; Zhang, N.; Na, K. X.; Luo, C.; Zhang, R. S.; Sun, M. C.; Lin, G. M.; Zhang, R. et al. Paclitaxel–paclitaxel prodrug nanoassembly as a versatile nanoplatform for combinational cancer therapy. ACS Appl. Mater. Interfaces 2016, 8, 33506–33513.

    Article  Google Scholar 

  17. Zhang, J. F.; Li, S. L.; An, F. F.; Liu, J.; Jin, S. B.; Zhang, J. C.; Wang, P. C.; Zhang, X. H.; Lee, C. S.; Liang, X. J. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale 2015, 7, 13503–13510.

    Article  Google Scholar 

  18. Xing, P. Y.; Zhao, Y. L.. Multifunctional nanoparticles self-assembled from small organic building blocks for biomedicine. Adv. Mater. 2016, 28, 7304–7339.

    Article  Google Scholar 

  19. Wang, H.; Xu, M.; Xiong, M. H.; Cheng, J. J. Reduction-responsive dithiomaleimide-based nanomedicine with high drug loading and FRETindicated drug release. Chem. Commun. 2015, 51, 4807–4810.

    Article  Google Scholar 

  20. Lorenz, S. A.; Bigwarfe Jr, P. M.; Balasubramanian, S. V.; Fetterly, G. J.; Straubinger, R. M.; Wood, T. D. Noncovalent dimerization of paclitaxel in solution: Evidence from electrospray ionization mass spectrometry. J. Pharm. Sci. 2002, 91, 2057–2066.

    Article  Google Scholar 

  21. Tam, Y. T.; Gao, J. M.; Kwon, G. S. Oligo(lactic acid)n-paclitaxel prodrugs for poly(ethylene glycol)-block-poly(lactic acid) micelles: Loading, release, and backbiting conversion for anticancer activity. J. Am. Chem. Soc. 2016, 138, 8674–8677.

    Article  Google Scholar 

  22. Pei, Q.; Hu, X. L.; Liu, S.; Li, Y.; Xie, Z. G.; Jing, X. B. Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. J. Control. Release 2017, 254, 23–33.

    Article  Google Scholar 

  23. Pei, Q.; Hu, X. L.; Zheng, X. H.; Liu, S.; Li, Y. W.; Jing, X. B.; Xie, Z. G. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 2018, 12, 1630–1641.

    Article  Google Scholar 

  24. Hu, Q. Y.; Chen, Q.; Gu, Z. Advances in transformable drug delivery systems. Biomaterials 2018, 178, 546–558.

    Article  Google Scholar 

  25. Chen, C. K.; Law, W. C.; Aalinkeel, R.; Yu, Y.; Nair, B.; Wu, J. C.; Mahajan, S.; Reynolds, J. L.; Li, Y. K.; Lai, C. K. et al. Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug-gene co-delivery to cancer cells. Nanoscale 2014, 6, 1567–1572.

    Article  Google Scholar 

  26. Song, M. L.; Liu, N.; He, L.; Liu, G.; Ling, D. S.; Su, X. H.; Sun, X. L. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Res. 2018, 11, 2796–2808.

    Article  Google Scholar 

  27. Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

    Article  Google Scholar 

  28. Zhao, P. H.; Jin, Z. K.; Chen, Q.; Yang, T.; Chen, D. Y.; Meng, J.; Lu, X. F.; Gu, Z.; He, Q. J. Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun. 2018, 9, 4241.

    Article  Google Scholar 

  29. Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 2018, 12, 5995–6005.

    Article  Google Scholar 

  30. Chen, Y. J.; Li, Z. H.; Wang, H. B.; Wang, Y.; Han, H. J.; Jin, Q.; Ji, J. IR-780 loaded phospholipid mimicking homopolymeric micelles for near-ir imaging and photothermal therapy of pancreatic cancer. ACS Appl. Mater. Interfaces 2016, 8, 6852–6858.

    Article  Google Scholar 

  31. Wang, K. K.; Zhang, Y. F.; Wang, J.; Yuan, A. H.; Sun, M. J.; Wu, J. H.; Hu, Y. Q. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421.

    Article  Google Scholar 

  32. Zhang, C.; Liu, T.; Su, Y. P.; Luo, S. L.; Zhu, Y.; Tan, X.; Fan, S.; Zhang, L. L.; Zhou, Y.; Cheng, T. M. et al. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomaterials 2010, 31, 6612–6617.

    Article  Google Scholar 

  33. Peng, C. L.; Shih, Y. H.; Lee, P. C.; Hsieh, T. M. H.; Luo, T. Y.; Shieh, M. J. Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano 2011, 5, 5594–5607.

    Article  Google Scholar 

  34. Chen, Q.; Wang, X.; Wang, C.; Feng, L. Z.; Li, Y. G.; Liu, Z. Druginduced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano 2015, 9, 5223–5233.

    Article  Google Scholar 

  35. Chen, Q.; Liu, Z. Albumin carriers for cancer theranostics: A conventional platform with new promise. Adv. Mater. 2016, 28, 10557–10566.

    Article  Google Scholar 

  36. Rong, P. F.; Huang, P.; Liu, Z. G.; Lin, J.; Jin, A.; Ma, Y.; Niu, G.; Yu, L.; Zeng, W. B.; Wang, W. et al. Protein-based photothermal theranostics for imaging-guided cancer therapy. Nanoscale 2015, 7, 16330–16336.

    Article  Google Scholar 

  37. Paál, K.; Müller, J.; Hegedûs, L. High affinity binding of paclitaxel to human serum albumin. Eur. J. Biochem. 2001, 268, 2187–2191.

    Article  Google Scholar 

  38. Chen, Q.; Liang, C.; Wang, C.; Liu, Z. An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv. Mater. 2015, 27, 903–910.

    Article  Google Scholar 

  39. Desai, N. Nab technology: A drug delivery platform utilising endothelial gp60 receptor-based transport and tumour-derived SPARC for targeting. Drug Deliv. Rep. 2007, 37–41.

    Google Scholar 

  40. Shen, Y. Q.; Jin, E. L.; Zhang, B.; Murphy, C. J.; Sui, M. H.; Zhao, J.; Wang, J. Q.; Tang, J. B.; Fan, M. H.; Van Kirk, E. et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J. Am. Chem. Soc. 2010, 132, 4259–4265.

    Article  Google Scholar 

  41. Yang, J.; Lv, Q.; Wei, W.; Yang, Z.; Dong, J.; Zhang, R.; Kan, Q.; He, Z.; Xu, Y. Bioresponsive albumin-conjugated paclitaxel prodrugs for cancer therapy. Drug Deliv. 2018, 25, 807–814.

    Article  Google Scholar 

  42. Pei, Q.; Hu, X. L.; Zhou, J. L.; Liu, S.; Xie, Z. G. Glutathione-responsive paclitaxel dimer nanovesicles with high drug content. Biomater. Sci. 2017, 5, 1517–1521.

    Article  Google Scholar 

  43. Luo, C.; Sun, J.; Liu, D.; Sun, B. J.; Miao, L.; Musetti, S.; Li, J.; Han, X. P.; Du, Y. Q.; Li, L. et al. Self-assembled redox dual-responsive prodrugnanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.

    Article  Google Scholar 

  44. Eetezadi, S.; Ekdawi, S. N.; Allen, C. The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Adv. Drug Deliv. Rev. 2015, 91, 7–22.

    Article  Google Scholar 

  45. MacEwan, S. R.; Chilkoti, A. From composition to cure: A systems engineering approach to anticancer drug carriers. Angew. Chem., Int. Ed. 2017, 56, 6712–6733.

    Article  Google Scholar 

  46. Gong, G. M.; Xu, Y.; Zhou, Y. Y.; Meng, Z. J.; Ren, G. Y.; Zhao, Y.; Zhang, X.; Wu, J. H.; Hu, Y. Q. Molecular switch for the assembly of lipophilic drug incorporated plasma protein nanoparticles and in vivo image. Biomacromolecules 2012, 13, 23–28.

    Article  Google Scholar 

  47. Ding, D. W.; Tang, X. L.; Cao, X. L.; Wu, J. H.; Yuan, A. H.; Qiao, Q.; Pan, J.; Hu, Y. Q. Novel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacy. AAPS PharmSciTech 2014, 15, 213–222.

    Article  Google Scholar 

  48. Zhao, S. F.; Wang, W. T.; Huang, Y. B.; Fu, Y. H.; Cheng, Y. Paclitaxel loaded human serum albumin nanoparticles stabilized with intermolecular disulfide bonds. Med. Chem. Comm. 2014, 5, 1658–1663.

    Article  Google Scholar 

  49. Lu, Y.; Zhang, E. S.; Yang, J. H.; Cao, Z. Q. Strategies to improve micelle stability for drug delivery. Nano Res. 2018, 11, 4985–4998.

    Article  Google Scholar 

  50. Wang, J. Q.; Sun, X. R.; Mao, W. W.; Sun, W. L.; Tang, J. B.; Sui, M. H.; Shen, Y. Q.; Gu, Z. W. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. Adv. Mater. 2013, 25, 3670–3676.

    Article  Google Scholar 

  51. Xiao, C. S.; Ding, J. X.; Ma, L. L.; Yang, C. G.; Zhuang, X. L.; Chen, X. S. Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polym. Chem. 2015, 6, 738–747.

    Article  Google Scholar 

  52. Jiang, C. X.; Cheng, H.; Yuan, A. H.; Tang, X. L.; Wu, J. H.; Hu, Y. Q. Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater. 2015, 14, 61–69.

    Article  Google Scholar 

  53. Zhang, X. H.; Wang, L.; Liu, S.; Zhang, W.; Liu, F.; Xie, Z. G. Nanoparticles of chlorin dimer with enhanced absorbance for photoacoustic imaging and phototherapy. Adv. Funct. Mater. 2018, 28, 1706507.

    Article  Google Scholar 

  54. Hahn, G. M.; Braun, J.; Har-Kedar, I. Thermochemotherapy: Synergism between hyperthermia (42–43 degrees) and adriamycin (of bleomycin) in mammalian cell inactivation. Proc. Natl. Acad. Sci. USA 1975, 72, 937–940.

    Article  Google Scholar 

  55. Tao, Y.; Ling, L.; Deng, Y. B.; Guo, Z. Q.; Zhang, G. B.; Ge, Z. S.; Ke, H. T.; Chen, H. B. Ultrastable near-infrared conjugated-polymer nanoparticles for dually photoactive tumor inhibition. Adv. Mater. 2017, 29, 1700487.

    Article  Google Scholar 

  56. Zhang, J. F.; Yang, C. X.; Zhang, R.; Chen, R.; Zhang, Z. Y.; Zhang, W. J.; Peng, S. H.; Chen, X. Y.; Liu, G.; Hsu, C. S. et al. Biocompatible D-A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy. Adv. Funct. Mater. 2017, 27, 1605094.

    Article  Google Scholar 

  57. Ryppa, C.; Mann-Steinberg, H.; Biniossek, M. L.; Satchi-Fainaro, R.; Kratz, F. In vitro and in vivo evaluation of a paclitaxel conjugate with the divalent peptide E-[c(RGDfK)2] that targets integrin αvβ3. Int. J. Pharm. 2009, 368, 89–97.

    Article  Google Scholar 

  58. Rempel, S. A.; Ge, S. G.; Gutiérrez, J. A. SPARC: A potential diagnostic marker of invasive meningiomas. Clin. Cancer Res. 1999, 5, 237–241.

    Google Scholar 

  59. Cortes, J.; Saura, C. Nanoparticle albumin-bound (nab™)-paclitaxel: Improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur. J. Cancer Suppl. 2010, 8, 1–10.

    Article  Google Scholar 

  60. Xiao, K.; Luo, J. T.; Fowler, W. L.; Li, Y. P.; Lee, J. S.; Xing, L.; Cheng, R. H.; Wang, L.; Lam, K. S. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials 2009, 30, 6006–6016.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51773197 and 51522307).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuli Hu or Zhigang Xie.

Electronic supplementary material

12274_2019_2318_MOESM1_ESM.pdf

Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Q., Hu, X., Zheng, X. et al. Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy. Nano Res. 12, 877–887 (2019). https://doi.org/10.1007/s12274-019-2318-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2318-7

Keywords

Navigation