Skip to main content
Log in

Origin of strong and narrow localized surface plasmon resonance of copper nanocubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Inexpensive copper nanoparticles are generally thought to possess weak and broad localized surface plasmon resonance (LSPR). The present experimental and theoretical studies show that tailoring the Cu nanoparticle to a cubic shape results in a single intense, narrow, and asymmetric LSPR line shape, which is even superior to round-shaped gold nanoparticles. In this study, the dielectric function of copper is decomposed into an interband transition component and a free-electron component. This allows interband transition-induced plasmon damping to be visualized both spectrally and by surface polarization charges. The results reveal that the LSPR of Cu nanocubes originates from the corner mode as it is spectrally separated from the interband transitions. In addition, the interband transitions lead to severe damping of the local electromagnetic field but the cubic corner LSPR mode survives. Cu nanocubes display an extinction coefficient comparable to the dipole mode of a gold nanosphere with the same volume and show a larger local electromagnetic field enhancement. These results will guide development of inexpensive plasmonic copper-based nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du, W.; Wang, T.; Chu, H. S.; Wu, L.; Liu, R. R.; Sun, S.; Phua, W. K.; Wang, L. J.; Tomczak, N.; Nijhuis, C. A. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photonics 2016, 10, 274–280.

    Article  Google Scholar 

  2. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

    Article  Google Scholar 

  3. Andrew, T. L.; Tsai, H. Y.; Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 2009, 324, 917–921.

    Article  Google Scholar 

  4. Li, J. T.; Cushing, S. K.; Meng, F. K.; Senty, T. R.; Bristow, A. D.; Wu, N. Q. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics 2015, 9, 601–607.

    Article  Google Scholar 

  5. Ni, X. J.; Wong, Z. J.; Mrejen, M.; Wang, Y.; Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 2015, 349, 1310–1314.

    Article  Google Scholar 

  6. Gömöry, F.; Solovyov, M.; Šouc, J.; Navau, C.; Prat-Camps, J.; Sanchez, A. Experimental realization of a magnetic cloak. Science 2012, 335, 1466–1468.

    Article  Google Scholar 

  7. Kawamura, G.; Alvarez, S.; Stewart, I. E.; Catenacci, M.; Chen, Z. F.; Ha, Y. C. Production of oxidation-resistant Cu-based nanoparticles by wire explosion. Sci. Rep. 2015, 5, 18333.

    Article  Google Scholar 

  8. Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

    Article  Google Scholar 

  9. Liu, P. S.; Wang, H.; Li, X. M.; Rui, M. C.; Zeng, H. B. Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media. RSC Adv. 2015, 5, 79738–79745.

    Article  Google Scholar 

  10. Gunalan, S.; Sivaraj, R.; Venckatesh, R. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: Optical properties. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2012, 97, 1140–1144.

    Article  Google Scholar 

  11. Pinchuk, A.; Von Plessen, G.; Kreibig, U. Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J. Phys. D: Appl. Phys. 2004, 37, 3133–3139.

    Article  Google Scholar 

  12. Khurgin, J. B. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss. 2015, 178, 109–122.

    Article  Google Scholar 

  13. Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314.

    Article  Google Scholar 

  14. Wang, H.; Tam, F.; Grady, N. K.; Halas, N. J. Cu nanoshells: Effects of interband transitions on the nanoparticle plasmon resonance. J. Phys. Chem. B 2005, 109, 18218–18222.

    Article  Google Scholar 

  15. Dang, T. M. D.; Le, T. T. T.; Fribourg-Blanc, E.; Dang, M. C. The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv. Nat. Sci: Nanosci. Nanotechnol. 2011, 2, 025004.

    Google Scholar 

  16. Chan, G. H.; Zhao, J.; Hicks, E. M.; Schatz, G. C.; Van Duyne, R. P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007, 7, 1947–1952.

    Article  Google Scholar 

  17. Sugawa, K.; Tamura, T.; Tahara, H.; Yamaguchi, D.; Akiyama, T.; Otsuki, J.; Kusaka, Y.; Fukuda, N.; Ushijima, H. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: Wavelength dependence of quenching and enhancement effects. ACS Nano 2013, 7, 9997–10010.

    Article  Google Scholar 

  18. Yang, H. J.; He, S. Y.; Chen, H. L.; Tuan, H. Y. Monodisperse copper nanocubes: Synthesis, self-assembly, and large-area dense-packed films. Chem. Mater. 2014, 26, 1785–1793.

    Article  Google Scholar 

  19. Guo, H. Z.; Chen, Y. Z.; Cortie, M. B.; Liu, X.; Xie, Q. S.; Wang, X.; Peng, D. L. Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties. J. Phys. Chem. C 2014, 118, 9801–9808.

    Article  Google Scholar 

  20. Crane, C. C.; Wang, F.; Li, J.; Tao, J.; Zhu, Y. M.; Chen, J. Y. Synthesis of copper-silica core-shell nanostructures with sharp and stable localized surface plasmon resonance. J. Phys. Chem. C 2017, 121, 5684–5692.

    Article  Google Scholar 

  21. Pirzadeh, Z.; Pakizeh, T.; Miljkovic, V.; Langhammer, C.; Dmitriev, A. Plasmon–interband coupling in nickel nanoantennas. ACS Photonics, 2014, 1, 158–162.

    Article  Google Scholar 

  22. Zhang, S. P.; Bao, K.; Halas, N. J.; Xu, H. X.; Nordlander, P. Substrateinduced Fano resonances of a plasmonic Nanocube: A route to increasedsensitivity localized surface Plasmon resonance sensors revealed. Nano Lett. 2011, 11, 1657–1663.

    Article  Google Scholar 

  23. Pellarin, M.; Ramade, J.; Rye, J. M.; Bonnet, C.; Broyer, M.; Lebeault, M. A.; Lermé, J.; Marguet, S.; Navarro, J. R. G.; Cottancin, E. Fano transparency in rounded nanocube dimers induced by gap plasmon coupling. ACS Nano 2016, 10, 11266–11279.

    Article  Google Scholar 

  24. Ruppin, R. Plasmon frequencies of cube shaped metal clusters. Z. Phys. D. At., Mol. Clusters 1996, 36, 69–71.

    Article  Google Scholar 

  25. Zhang, K. J.; Da, B.; Ding, Z. J. LSP modes of Ag nanocube and dimer studied by DDA simulation. Surf. Interface Anal. 2016, 48, 1256–1262.

    Article  Google Scholar 

  26. Cortie, M. B.; Liu, F. G.; Arnold, M. D.; Niidome, Y. Multimode resonances in silver nanocuboids. Langmuir 2012, 28, 9103–9112.

    Article  Google Scholar 

  27. Mazzucco, S.; Geuquet, N.; Ye, J.; Stéphan, O.; Van Roy, W.; Van Dorpe, P.; Henrard, L.; Kociak, M. Ultralocal modification of surface plasmons properties in silver nanocubes. Nano Lett. 2012, 12, 1288–1294.

    Article  Google Scholar 

  28. Mogensen, K. B.; Kneipp, K. Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: Monitoring the onset of surface screening effects. J. Phys. Chem. C 2014, 118, 28075–28083.

    Article  Google Scholar 

  29. Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

    Article  Google Scholar 

  30. Hooshmand, N.; O’Neil, D.; Asiri, A. M.; El-Sayed, M. Spectroscopy of homo- and heterodimers of silver and gold nanocubes as a function of separation: A DDA simulation. J. Phys. Chem. A 2014, 118, 8338–8344.

    Article  Google Scholar 

  31. Zeman, E. J.; Schatz, G. C. An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, in, Zn, and Cd. J. Phys. Chem. 1987, 91, 634–643.

    Article  Google Scholar 

  32. Ehrenreich, H.; Philipp, H. R. Optical properties of Ag and Cu. Phys. Rev. 1962, 128, 1622–1629.

    Article  Google Scholar 

  33. Fuchs, R. Theory of the optical properties of ionic crystal cubes. Phys. Rev. B 1975, 11, 1732–1740.

    Article  Google Scholar 

  34. Draine, B. T.; Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 1994, 11, 1491–1499.

    Article  Google Scholar 

  35. Bigelow, N. W.; Vaschillo, A.; Iberi, V.; Camden, J. P.; Masiello, D. J. Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods. ACS Nano 2012, 6, 7497–7504.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH (R15NS087515). Use of WVU Shared Research Facilities was acknowledged. We are also grateful to the fruitful discussion with Dr. Alexander Govorov at Ohio University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Huang or Nianqiang Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, P., Tang, H., Liu, B. et al. Origin of strong and narrow localized surface plasmon resonance of copper nanocubes. Nano Res. 12, 63–68 (2019). https://doi.org/10.1007/s12274-018-2178-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2178-6

Keywords

Navigation