Skip to main content
Log in

Multivalent interacting glycodendrimer to prevent amyloid-peptide fibril formation induced by Cu(II): A multidisciplinary approach

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Amyloid peptide fibrillogenesis induced by Cu(II) ions is a key event in the pathogenesis of Alzheimer’s disease. Dendrimers have been found to be active in preventing fibril formation. Therefore, they hold promise for the treatment of Alzheimer’s disease. In this study, the fibrillation mechanism of amyloid peptide Aβ 1-40 was studied by adding Cu(II) in the absence and presence of 4th generation poly(propyleneimine) glycodendrimer functionalized with sulfate groups, using dynamic light scattering (DLS), circular dichroism (CD), fluorescence, electron paramagnetic resonance (EPR) and molecular modeling (MD). The glycodendrimer was non-toxic to mHippoE-18 embryonic mouse hippocampal cells, selected as a nerve cell model, and decreased the toxicity of peptide aggregates formed after the addition of Cu(II). The binary systems of Cu(II)–glycodendrimer, Cu(II)–peptide, and glycodendrimer–peptide were first characterized. At the lowest Cu(II)/glycodendrimer molar ratios, Cu(II) was complexed by the internal-dendrimer nitrogen sites. After saturation of these sites, Cu(II) binding with sulfate groups occurred. Stable Cu(II)–peptide complexes formed within 5 min and were responsible for a transition from an α helix to a β-sheet conformation of Aβ 1-40. Glycodendrimer–peptide interactions provoked the stabilization of the α-helix, as demonstrated in the absence of Cu(II) by the Thioflavin T assay, and in the presence of Cu(II) by CD, EPR, and MD. Formation of fibrils is differentially modulated by glycodendrimer and Cu(II) concentrations for a fixed amount of Aβ 1-40. Therefore, this multidisciplinary study facilitated the recognition of optimal experimental conditions that allow the glycodendrimer to avoid the fibril formation induced by Cu(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram, L.; Tanzi, R. E. The genetic epidemiology of neurodegenerative disease. J. Clin. Invest. 2005, 115, 1449–1457.

    Article  Google Scholar 

  2. Verma, M.; Vats, A.; Taneja, V. Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann. Indian Acad. Neurol. 2015, 18, 138–145.

    Article  Google Scholar 

  3. Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.-U.; Jönsson, B. The economic cost of brain disorders in Europe. Eur. J. Neurol. 2012, 19, 155–162.

    Article  Google Scholar 

  4. WHO. Dementia: Fact sheet N°362; World Health Organization: Geneva, 2015.

    Google Scholar 

  5. Seltzer, B.; Zolnouni, P.; Nunez, M.; Goldman, R.; Kumar, D.; Ieni, J.; Richardson, S. Donepezil "402" Study Group. Efficacy of donepezil in early-stage Alzheimer disease. A randomized placebo-controlled trial. Arch. Neurol. 2004, 61, 1852–1856.

    Article  Google Scholar 

  6. Yiannopoulou, K. G.; Papageorgiou, S. G. Current and future treatments for Alzheimer’s disease. Ther. Adv. Neurol. Disord. 2013, 6, 19–33.

    Article  Google Scholar 

  7. Colvin, V. L.; Kulinowski, K. M. Nanoparticles as catalysts for protein fibrillation. Proc. Natl. Acad. Sci. USA 2007, 104, 8679–8680.

    Article  Google Scholar 

  8. Parveen, R.; Shamsi, T. N.; Fatima, S. Nanoparticles–protein interaction: Role in protein aggregation and clinical implications. Int. J. Biol. Macromol. 2017, 94, 386–395.

    Article  Google Scholar 

  9. Cabaleiro-Lago, C.; Quinlan-Pluck, F.; Lynch, I.; Lindman, S.; Minogue, A. M.; Thulin, E.; Walsh, D. M.; Dawson, K. A.; Linse, S. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc. 2008, 130, 15437–15443.

    Article  Google Scholar 

  10. Ottaviani, M. F.; Mazzeo, R.; Cangiotti, M.; Fiorani, L.; Majoral, J. P.; Caminade, A. M.; Pedziwiatr, E.; Bryszewska, M.; Klajnert, B. Time evolution of the aggregation process of peptides involved in neurodegenerative diseases and preventing aggregation effect of phosphorus dendrimers studied by EPR. Biomacromolecules 2010, 11, 3014–3021.

    Article  Google Scholar 

  11. Appelhans, D.; Benseny, N.; Klementiveva, O.; Bryszewska, M.; Klajnert, B.; Cladera, J. Dendrimers as antiamyloidogenic agents. Dendrimer-amyloid aggregates morphology and cell toxicity. In Dendrimers in Biomedical Applications; Klajnert, B.; Peng, L.; Cena, V., Eds.; RSC Publishing: Cambridge, UK, 2013; pp 1–13.

    Google Scholar 

  12. Aulenta, F.; Hayes, W.; Rannard, S. Dendrimers: A new class of nanoscopic containers and delivery devices. Eur. Polym. J. 2003, 39, 1741–1771.

    Article  Google Scholar 

  13. Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J. W.; Meijer, E. W.; Paulus, W.; Duncan, R. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 2000, 65, 133–148.

    Article  Google Scholar 

  14. Barrett, T.; Ravizzini, G.; Choyke, P. L.; Kobayashi, H. Dendrimers in medical nanotechnology. IEEE Eng. Med. Biol. Mag. 2009, 28, 12–22.

    Article  Google Scholar 

  15. Bullen, H. A.; Hemmer, R.; Haskamp, A.; Cason, C.; Wall, S.; Spaulding, R.; Rossow, B.; Hester, M.; Caroway, M.; Haik K. L. Evaluation of biotinylated PAMAM dendrimer toxicity in models of the blood brain barrier: A biophysical and cellular approach. J. Biomater. Nanobiotechnol. 2011, 2, 485–493.

    Article  Google Scholar 

  16. Appelhans, D.; Klajnert-Maculewicz, B.; Janaszewska, A.; Lazniewska, J.; Voit, B. Dendritic glycopolymers based on dendritic polyamine scaffolds: View on their synthetic approaches, characteristics and potential for biomedical applications. Chem. Soc. Rev. 2015, 44, 3968–3996.

    Article  Google Scholar 

  17. Klajnert, B.; Cortijo-Arellano, M.; Cladera, J.; Bryszewska, M. Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochem. Biophys. Res. Commun. 2006, 345, 21–28.

    Article  Google Scholar 

  18. Klajnert, B.; Cortijo-Arellano, M.; Bryszewska, M.; Cladera, J. Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer’s and prion diseases. Biochem. Biophys. Res. Commun. 2006, 339, 577–582.

    Article  Google Scholar 

  19. Klajnert, B.; Cortijo-Arellano, M.; Cladera, J.; Majoral, J. P.; Caminade, A.-M.; Bryszewska M. Influence of phosphorus dendrimers on the aggregation of the prion peptide PrP 185–208. Biochem. Biophys. Res. Commun. 2007, 364, 20–25.

    Article  Google Scholar 

  20. Klementieva, O.; Benseny-Cases, N.; Gella, A.; Appelhans, D.; Voit, B.; Cladera, J. Dense shell glycodendrimers as potential nontoxic anti-amyloidogenic agents in Alzheimer’s disease. Amyloid-dendrimer aggregates morphology and cell toxicity. Biomacromolecules 2011, 12, 3903–3909.

    Article  Google Scholar 

  21. Benseny-Cases, N.; Klementieva, O.; Cladera, J. Dendrimers antiamyloidogenic potential in neurodegenerative diseases. New J. Chem. 2012, 36, 211–216.

    Article  Google Scholar 

  22. Wasiak, T.; Ionov, M.; Nieznanski, K.; Nieznanska, H.; Klementieva, O.; Granell, M.; Cladera, J.; Majoral, J.-P.; Caminade, A.-M.; Klajnert, B. Phosphorus dendrimers affect Alzheimer’s (Aβ1–28) peptide and MAP-Tau protein aggregation. Mol. Pharm. 2012, 9, 458–469.

    Article  Google Scholar 

  23. McCarthy, J. M.; Moreno, B. R.; Filippini, D.; Komber, H.; Maly, M.; Cernescu, M.; Brutschy, B.; Appelhans, D.; Rogers, M. S. Influence of surface groups on poly(propylene imine) dendrimers antiprion activity. Biomacromolecules 2013, 14, 27–37.

    Article  Google Scholar 

  24. Milowska, K.; Malachowska, M.; Gabryelak, T. PAMAM G4 dendrimers affect the aggregation of α-synuclein. Int. J. Biol. Macromol. 2011, 48, 742–746.

    Article  Google Scholar 

  25. Milowska, K.; Gabryelak, T.; Bryszewska, M.; Caminade, A.-M.; Majoral, J.-P. Phosphorus-containing dendrimers against α-synuclein fibril formation. Int. J. Biol. Macromol. 2012, 50, 1138–1143.

    Article  Google Scholar 

  26. Milowska, K.; Grochowina, J.; Katir, N.; El Kadib, A.; Majoral, J.-P.; Bryszewska, M.; Gabryelak T. Interaction between viologen-phosphorus dendrimers and α-synuclein. J. Lumin. 2013, 134, 132–137.

    Article  Google Scholar 

  27. Milowska, K.; Grochowina, J.; Katir, N.; El Kadib, A.; Majoral, J.-P.; Bryszewska, M.; Gabryelak T. Viologen-phosphorus dendrimers inhibit α-synuclein fibrillation. Mol. Pharm. 2013, 10, 1131–1137.

    Article  Google Scholar 

  28. Zeliger, H. I.; Lipinski, B. Physiochemical basis of human degenerative disease. Interdiscip. Toxicol. 2015, 8, 15–21.

    Article  Google Scholar 

  29. Crichton, R. R.; Ward, R. J. Metal-Based Neurodegeneration: From Molecular Mechanisms to Therapeutic Strategies; John Wiley & Sons: Chichester, 2006.

    Google Scholar 

  30. Crichton, R. R.; Ward, R. J. Metal-Based Neurodegeneration: From Molecular Mechanisms to Therapeutic Strategies, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014.

    Google Scholar 

  31. Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 2006, 106, 1995–2044.

    Article  Google Scholar 

  32. Kozlowski, H.; Janicka-Klos, A.; Brasun, J.; Gaggelli, E.; Valensin, D.; Valensin G. Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord. Chem. Rev. 2009, 253, 2665–2685.

    Article  Google Scholar 

  33. Faller, P.; Hureau, C.; La Penna, G. Metal ions and intrinsically disordered proteins and peptides: From Cu/Zn amyloid-β to general principles. Acc. Chem. Res. 2014, 47, 2252–2259.

    Article  Google Scholar 

  34. Karr, J. W.; Kaupp L. J.; Szalai V. A. Amyloid-β binds Cu2+ in a mononuclear metal ion binding site. J. Am. Chem. Soc. 2004, 126, 13534–13538.

    Article  Google Scholar 

  35. Liu, S. T.; Howlett, G.; Barrow, C. J. Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the Aβ peptide of Alzheimer’s disease. Biochemistry 1999, 38, 9373–9378.

    Article  Google Scholar 

  36. La Penna, G.; Hureau, C.; Andreussi, O.; Faller, P. Identifying, by first-principles simulations, Cu[amyloid-β]_species making Fenton-type reactions in Alzheimer’s disease. J. Phys. Chem. B 2013, 117, 16455–16467.

    Article  Google Scholar 

  37. Kozłowski, H.; Luczkowski, M.; Valensin, D.; Valensin, G. Metal ion binding properties of proteins related to neurodegeneration. In Neurodegenerative Diseases and Metal Ions: Metal Ions in Life Science, vol. 1; Sigel, A.; Sigel, H.; Sigel, R. K. O., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2006.

    Google Scholar 

  38. Vašák, M.; Meloni, G. Metallothionein-3, zinc, and copper in the central nervous system. In Metallothioneins and Related Chelators; Sigel, A.; Sigel, H.; Sigel, R. K. O., Eds.; The Royal Society of Chemistry: Cambridge, 2009; pp 319–352.

    Google Scholar 

  39. Klementieva, O.; Aso, E.; Filippini, D.; Benseny-Cases, N.; Carmona, M.; Juvés, S.; Appelhans, D.; Cladera, J.; Ferrer, I. Effect of poly(propylene imine) glycodendrimers on β-amyloid aggregation in vitro and in APP/PS1 transgenic mice, as a model of brain amyloid deposition and Alzheimer’s disease. Biomacromolecules 2013, 14, 3570–3580.

    Article  Google Scholar 

  40. Klajnert, B.; Appelhans, D.; Komber, H.; Morgner, N.; Schwarz, S.; Richter, S.; Brutschy, B.; Ionov, M.; Tonkikh, A. K.; Bryszewska, M. et al. The influence of densely organized maltose shells on the biological properties of poly(propylene imine) dendrimers: New effects dependent on Hydrogen bonding. Chem.-Eur. J. 2008, 14, 7030–7041.

    Article  Google Scholar 

  41. McCarthy, J. M.; Franke, M.; Resenberger, U. K.; Waldron, S.; Simpson, J. C.; Tatzelt, J.; Appelhans, D.; Rogers, M. S. Anti-prion drug mPPIg5 inhibits PrPC conversion to PrPSc. PLoS One 2013, 8, e55282.

    Article  Google Scholar 

  42. Furlan, S.; La Penna, G.; Appelhans, D.; Cangiotti, M.; Ottaviani, M. F.; Danani, A. Combined EPR and molecular modeling study of PPI dendrimers interacting with copper ions: Effect of generation and maltose decoration. J. Phys. Chem. B 2014, 118, 12098–12111.

    Article  Google Scholar 

  43. Ziemba, B.; Janaszewska, A; Ciepluch, K; Krotewicz, M.; Fogel, W. A.; Appelhans, D.; Voit, B.; Klajnert, B.; Bryszewska, M. In vivo toxicity of poly(propyleneimine) dendrimers. J. Biomed. Mater. Res. Part A 2011, 99, 261–268.

    Article  Google Scholar 

  44. Rossi, J. C.; Maret, B.; Vidot, K.; Francoia, J. P.; Cangiotti, M.; Lucchi, S.; Coppola, C.; Ottaviani, M. F. Multi-technique characterization of poly-L-lysine dendrigrafts-Cu(II) complexes for biocatalysis. Macromol. Biosci. 2015, 15, 275–290.

    Article  Google Scholar 

  45. Ottaviani, M. F.; El Brahmi, N.; Cangiotti, M.; Coppola, C.; Buccella, F.; Cresteil, T.; Mignani, S.; Caminade, A. M.; Costes, J. P.; Majoral, J.-P. Comparative EPR studies of Cu(II)-conjugated phosphorous-dendrimers in the absence and presence of normal and cancer cells. RSC Adv. 2014, 4, 36573–36583.

    Article  Google Scholar 

  46. Ottaviani, M. F.; Cangiotti, M.; Fattori, A.; Coppola, C.; Lucchi, S.; Ficker, M.; Petersen, J. F.; Christensen, J. B. Copper(II) complexes with 4-carbomethoxypyrrolidone functionalized PAMAM-dendrimers: An EPR study. J. Phys. Chem. B 2013, 117, 14163–14172.

    Article  Google Scholar 

  47. Apicella, A.; Soncini, M.; Deriu, M. A.; Natalello, A.; Bonanomi, M.; Dellasega, D.; Tortora, P.; Regonesi, M. E.; Casari, C. S. A hydrophobic gold surface triggers misfolding and aggregation of the amyloidogenic Josephin domain in monomeric form, while leaving the oligomers unaffected. PLoS One 2013, 8, e58794.

    Article  Google Scholar 

  48. Grasso, G.; Tuszynski, J. A.; Morbiducci, U.; Licandro, G.; Danani, A.; Deriu, M. A. Thermodynamic and kinetic stability of the Josephin Domain closed arrangement: Evidences from replica exchange molecular dynamics. Biol. Direct 2017, 12, 2.

    Article  Google Scholar 

  49. Deriu, M. A.; Grasso, G.; Tuszynski, J. A.; Gallo, D.; Morbiducci, U.; Danani, A. Josephin Domain structural conformations explored by metadynamics in essential coordinates. PLoS Comput. Biol. 2016, 12, e1004699.

    Article  Google Scholar 

  50. Deriu, M. A.; Grasso, G.; Licandro, G.; Danani, A.; Gallo, D.; Tuszynski, J. A.; Morbiducci, U. Investigation of the Josephin domain protein–protein interaction by molecular dynamics. PLoS One 2014, 9, e108677.

    Article  Google Scholar 

  51. Soncini, M.; Vesentini, S.; Ruffoni, D.; Orsi, M.; Deriu, M. A.; Redaelli, A. Mechanical response and conformational changes of alpha-actinin domains during unfolding: A molecular dynamics study. Biomech. Model. Mechanobiol. 2007, 6, 399–407.

    Article  Google Scholar 

  52. Garzoni, M.; Cheval, N.; Fahmi, A.; Danani, A.; Pavan, G. M. Ion-selective controlled assembly of dendrimer-based functional nanofibers and their ionic-competitive disassembly. J. Am. Chem. Soc. 2012, 134, 3349–3357.

    Article  Google Scholar 

  53. Popescu, L. M.; Piticescu, R. M.; Doni, G.; Danani, A. Interfacial interactions of Fe3+ with PAMAM dendrimer in different pressure conditions. Molecular dynamics. Rev. Roum. Chim. 2012, 57, 35–38.

    Google Scholar 

  54. Deriu, M. A.; Popescu, L. M.; Ottaviani, M. F.; Danani, A.; Piticescu, R. M. Iron oxide/PAMAM nanostructured hybrids: Combined computational and experimental studies. J. Mater. Sci. 2016, 51, 1996–2007.

    Article  Google Scholar 

  55. Boye, S.; Ennen, E.; Scharfenberg, L.; Appelhans, D.; Nilsson, L.; Lederer, A. From 1D rods to 3D networks: A biohybrid topological diversity investigated by asymmetrical flow field-flow fractionation. Macromolecules 2015, 48, 4607–4619.

    Article  Google Scholar 

  56. Tomalia, D. A.; Rookmaker, M. Poly (propylene imine) dendrimers. In Polymer Data Handbook, 2nd ed.; Mark, J. E., Ed.; Oxford University Press: New York, 2009; pp 979–982.

    Google Scholar 

  57. Louis-Jeune, C.; Andrade-Navarro, M. A.; Perez-Iratxeta, C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 2012, 80, 374–381.

    Article  Google Scholar 

  58. Budil, D. E.; Lee, S.; Saxena, S.; Freed, J. H. Nonlinear-least-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg–Marquardt algorithm. J. Magn. Reson. Ser. A 1996, 120, 155–189.

    Article  Google Scholar 

  59. Wogulis, M.; Wright, S.; Cunningham, D.; Chilcote, T.; Powell, K.; Rydel, R. E. Nucleation-dependent polymerization is an essential component of amyloid-mediated neuronal cell death. J. Neurosci. 2005, 25, 1071–1080.

    Article  Google Scholar 

  60. Coles, M.; Bicknell, W.; Watson, A. A.; Fairlie, D. P.; Craik, D. J. Solution structure of amyloid β-peptide(1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 1998, 37, 11064–11077.

    Article  Google Scholar 

  61. Boopathi, S.; Kolandaivel, P. Role of zinc and copper metal ions in amyloid β-peptides Aβ1–40 and Aβ1–42 aggregation. RSC Adv. 2014, 4, 38951–38965.

    Article  Google Scholar 

  62. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006, 65, 712–725.

    Article  Google Scholar 

  63. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved sidechain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958.

    Google Scholar 

  64. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935.

    Article  Google Scholar 

  65. Lindorff-Larsen, K.; Maragakis, P.; Piana, S.; Eastwood, M. P.; Dror, R. O.; Shaw, D. E. Systematic validation of protein force fields against experimental data. PLoS One 2012, 7, e32131.

    Article  Google Scholar 

  66. Robertazzi, A.; Vargiu, A. V.; Magistrato, A.; Ruggerone, P.; Carloni, P.; de Hoog, P.; Reedijk, J. Copper-1,10-phenanthroline complexes binding to DNA: Structural predictions from molecular simulations. J. Phys. Chem. B 2009, 113, 10881–10890.

    Article  Google Scholar 

  67. Pavan, G. M.; Posocco, P.; Tagliabue, A.; Maly, M.; Malek, A.; Danani, A.; Ragg, E.; Catapano, C. V.; Pricl, S. PAMAM dendrimers for siRNA delivery: Computational and experimental insights. Chem.-Eur. J. 2010, 16, 7781–7795.

    Article  Google Scholar 

  68. Pavan, G. M.; Monteagudo, S.; Guerra, J.; Carrión, B.; Ocaña, V.; Rodríguez-Lopez, J.; Danani, A.; Pérez-Martínez, F. C.; Ceña, V. Role of generation, architecture, pH and ionic strength on successful siRNA delivery and transfection by hybrid PPV-PAMAM dendrimers. Curr. Med. Chem. 2012, 19, 4929–4941.

    Article  Google Scholar 

  69. Jensen, L. B.; Pavan, G. M.; Kasimova, M. R.; Rutherford, S.; Danani, A.; Nielsen, H. M.; Foged, C. Elucidating the molecular mechanism of PAMAM-siRNA dendriplex selfassembly: Effect of dendrimer charge density. Int. J. Pharm. 2011, 416, 410–418.

    Article  Google Scholar 

  70. Pavan, G. M.; Albertazzi, L.; Danani, A. Ability to adapt: Different generations of PAMAM dendrimers show different behaviors in binding siRNA. J. Phys. Chem. B 2010, 114, 2667–2675.

    Article  Google Scholar 

  71. Maingi, V.; Jain, V.; Bharatam, P. V.; Maiti, P. K. Dendrimer building toolkit: Model building and characterization of various dendrimer architectures. J. Comput. Chem. 2012, 33, 1997–2011.

    Article  Google Scholar 

  72. Mukherjee, G.; Patra, N.; Barua, P.; Jayaram, B. A fast empirical GAFF compatible partial atomic charge assignment scheme for modeling interactions of small molecules with biomolecular targets. J. Comput. Chem. 2011, 32, 893–907.

    Article  Google Scholar 

  73. da Silva, A. W. S.; Vranken, W. F. ACPYPE—AnteChamber PYthon parser interfacE. BMC Res. Notes 2012, 5, 367.

    Article  Google Scholar 

  74. Dupradeau, F. Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; Rosanski, W.; Cieplak, P. The R.E.D. tools: Advances in RESP and ESP charge derivation and force field library building. Phys. Chem. Chem. Phys. 2010, 12, 7821–7839.

    Article  Google Scholar 

  75. Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J. C.; Cieplak, P.; Dupradeau, F. Y. R.E.D. Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 2011, 39, W511–W517.

    Article  Google Scholar 

  76. Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280.

    Article  Google Scholar 

  77. Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.

    Article  Google Scholar 

  78. Berendsen, H. J. C.; Postma, J. P. M.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.

    Article  Google Scholar 

  79. Nosé, S.; Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 1983, 50, 1055–1076.

    Article  Google Scholar 

  80. Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190.

    Article  Google Scholar 

  81. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447.

    Article  Google Scholar 

  82. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

    Article  Google Scholar 

  83. Ulucan, O.; Jaitly, T.; Helms, V. Energetics of hydrophilic protein–protein association and the role of water. J. Chem. Theory Comput. 2014, 10, 3512–3524.

    Article  Google Scholar 

  84. Grasso, G.; Deriu, M. A.; Prat, M.; Rimondini, L.; Vernè, E.; Follenzi, A.; Danani, A. Cell penetrating peptide adsorption on magnetite and silica surfaces: A computational investigation. J. Phys. Chem. B 2015, 119, 8239–8246.

    Article  Google Scholar 

  85. De Moura, D. C.; Bryksa, B. C.; Yada, R. Y. In silico insights into protein–protein interactions and folding dynamics of the saposin-like domain of Solanum tuberosum aspartic protease. PLoS One 2014, 9, e104315.

    Article  Google Scholar 

  86. Lemkul, J. A.; Bevan, D. R. Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. J. Phys. Chem. B 2010, 114, 1652–1660.

    Article  Google Scholar 

  87. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992, 13, 1011–1021.

    Article  Google Scholar 

  88. Gkeka, P.; Angelikopoulos, P.; Sarkisov, L.; Cournia, Z. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion. PLoS Comput. Biol. 2014, 10, e1003917.

    Article  Google Scholar 

  89. Grasso, G.; Deriu, M. A.; Tuszynski, J. A.; Gallo, D.; Morbiducci, U.; Danani, A. Conformational fluctuations of the AXH monomer of Ataxin-1. Proteins 2016, 84, 52–59.

    Article  Google Scholar 

  90. Kannappan, R.; Rousselin, Y.; Jabri, R. Z.; Goze, C.; Brandès, S.; Guilard, R.; Zrineh, A.; Denat, F. Synthesis, structure and coordination properties of three cyclam-based ligands bearing one scorpionate arm. Inorg. Chim. Acta 2011, 373, 150–158.

    Article  Google Scholar 

  91. Alves, L. G.; Souto, M.; Madeira, F.; Adão, P.; Munhá, R. F.; Martins, A. M. Syntheses and solid state structures of cyclam-based copper and zinc compounds. J. Organomet. Chem. 2014, 760, 130–137.

    Article  Google Scholar 

  92. Lima, L. M. P.; Esteban-Gómez, D.; Delgado, R.; Platas-Iglesias, C.; Tripier, R. Monopicolinate cyclen and cyclam derivatives for stable copper(II) complexation. Inorg. Chem., 2012, 51, 6916–6927.

    Article  Google Scholar 

  93. Dorlet, P.; Gambarelli, S.; Faller, P.; Hureau, C. Pulse EPR spectroscopy reveals the coordination sphere of copper(II) ions in the 1–16 Amyloid-β peptide: A key role of the first two N-terminus residues. Angew. Chem., Int. Ed. 2009, 48, 9273–9276.

    Article  Google Scholar 

  94. Drew, S. C.; Masters, C. L.; Barnham, K. J. J. Alanine-2 carbonyl is an oxygen ligand in Cu2+ coordination of Alzheimer’s disease amyloid-β peptide—Relevance to N-terminally truncated forms. J. Am. Chem. Soc. 2009, 131, 8760–8761.

    Article  Google Scholar 

  95. Drew, S. C.; Noble, C. J.; Masters, C. L.; Hanson, G. R.; Barnham, K. J. Pleomorphic copper coordination by Alzheimer’s disease amyloid-β peptide. J. Am. Chem. Soc. 2009, 131, 1195–1207.

    Article  Google Scholar 

  96. Hureau, C.; Dorlet P. Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 2: Dependence of Cu(II) binding sites with Aβ sequences. Coord. Chem. Rev. 2012, 256, 2175–2187.

    Article  Google Scholar 

  97. Opazo, C.; Ruiz, F. H.; Inestrosa N. C. Amyloid-β-peptide reduces copper(II) to copper(I) independent of its aggregation state. Biol. Res. 2000, 33, 125–131.

    Article  Google Scholar 

  98. Faller, P.; Hureau, C. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Trans. 2009, 1080–1094.

    Google Scholar 

  99. Azimi, S.; Rauk, A. On the involvement of copper binding to the N-terminus of the amyloid beta peptide of Alzheimer’s disease: A computational study on model systems. Int. J. Alzheimers Dis. 2011, 2011, 539762.

    Google Scholar 

  100. Lv, Z. J.; Roychaudhuri, R.; Condron, M. M.; Teplow, D. B.; Lyubchenko, Y. L. Mechanism of amyloid β-protein dimerization determined using single-molecule AFM force spectroscopy. Sci. Rep. 2013, 3, 2880.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank our students: Pawel Piatek and Agnieszka Karenko for their assistance with the collection of a part of the data. Authors also thank Mrs. Christiane Effenberg for synthesizing the glycodendirmer, Dr. Hartmut Komber for NMR measurements and Dr. Susanne Boye for AF4 measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barbara Klajnert-Maculewicz, Andrea Danani or Maria Francesca Ottaviani.

Electronic supplementary material

12274_2017_1734_MOESM1_ESM.pdf

Multivalent interacting glycodendrimer to prevent amyloid-peptide fibril formation induced by Cu(II): A multidisciplinary approach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janaszewska, A., Klajnert-Maculewicz, B., Marcinkowska, M. et al. Multivalent interacting glycodendrimer to prevent amyloid-peptide fibril formation induced by Cu(II): A multidisciplinary approach. Nano Res. 11, 1204–1226 (2018). https://doi.org/10.1007/s12274-017-1734-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1734-9

Keywords

Navigation