Skip to main content
Log in

Catalase-imprinted Fe3O4/Fe@fibrous SiO2/polydopamine nanoparticles: An integrated nanoplatform of magnetic targeting, magnetic resonance imaging, and dual-mode cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recent advances in the research on the molecular mechanism of cell death and methods for preparation of nanomaterials make the integration of various therapeutic approaches, targeting, and imaging modes into a single nanoscale complex a new trend for the development of future nanotherapeutics. Hence, a novel ellipsoidal composite nanoplatform composed of a magnetic Fe3O4/Fe nanorod core (~120 nm) enwrapped by a catalase (CAT)-imprinted fibrous SiO2/ polydopamine (F-SiO2/PDA) shell with thickness 70 nm was prepared in this work. In vitro experiments showed that the Fe3O4/Fe@F-SiO2/PDA nanoparticles can selectively inhibit the bioactivity of CAT in tumor cells by the molecular imprinting technique. As a result, the H2O2 level in tumor cells was elevated dramatically. At the same time, the Fe3O4/Fe core released Fe ions to catalyze the conversion of H2O2 to ·OH in tumor cells. Eventually, the concentration of ·OH in tumor cells rapidly rose to a lethal level thus triggering apoptosis. Combined with the remarkable near-infrared light (NIR) photothermal effect of the CAT-imprinted PDA layer, the Fe3O4/Fe@F-SiO2/PDA nanoparticles can effectively kill MCF-7, HeLa, and 293T tumor cells but are not toxic to nontumor cells. Furthermore, these nanoparticles show good capacity for magnetic targeting and suitability for magnetic resonance imaging (MRI). Therefore, the integrated multifunctional nanoplatform opens up new possibilities for high-efficiency visual targeted nonchemo therapy for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach. Nat. Rev. Drug Discov. 2009, 8, 579–591.

    Article  Google Scholar 

  2. Naidu, M. U. R.; Ramana, G. V.; Rani, P. U.; Mohan, I. K.; Suman, A.; Roy, P. Chemotherapy-induced and/or radiation therapy-induced oral mucositis-complicating the treatment of cancer. Neoplasia 2004, 6, 423–431.

    Article  Google Scholar 

  3. Yun, J.; Mullarky, E.; Lu, C. Y.; Bosch, K. N.; Kavalier, A.; Rivera, K.; Roper, J.; Chio, I. I. C.; Giannopoulou, E. G.; Rago, C. et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015, 350, 1391–1396.

    Article  Google Scholar 

  4. Huang, P.; Feng, L.; Oldham, E. A.; Keating, M. J.; Plunkett, W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000, 407, 390–395.

    Article  Google Scholar 

  5. Kawanishi, S.; Hiraku, Y.; Pinlaor, S.; Ma, N. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol. Chem. 2006, 387, 365–372.

    Article  Google Scholar 

  6. Pal, S.; Dey, S. K.; Saha, C. Inhibition of catalase by tea catechins in free and cellular state: A biophysical approach. PLoS One 2014, 9, e102460.

    Article  Google Scholar 

  7. Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals. Nat. Rev. Mol. Cell Biol. 2007, 8, 722–728.

    Article  Google Scholar 

  8. Yang, L.; Zheng, X. L.; Sun, H.; Zhong, Y. J.; Wang, Q.; He, H. N.; Shi, X. W.; Zhou, B.; Li, J. K.; Lin, Y. et al. Catalase suppression-mediated H2O2 accumulation in cancer cells by wogonin effectively blocks tumor necrosis factorinduced NF-κB activation and sensitizes apoptosis. Cancer Sci. 2011, 102, 870–876.

    Article  Google Scholar 

  9. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13.

    Article  Google Scholar 

  10. Kwon, B.; Han, E.; Yang, W.; Cho, W.; Yoo, W.; Hwang, J.; Kwon, B. M.; Lee, D. Nano-Fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents. ACS Appl. Mater. Interfaces 2016, 8, 5887–5897.

    Article  Google Scholar 

  11. Huang, G.; Chen, H. B.; Dong, Y.; Luo, X. Q.; Yu, H. J.; Moore, Z.; Bey, E. A.; Boothman, D. A.; Gao, J. M. Superparamagnetic iron oxide nanoparticles: Amplifying ROS stress to improve anticancer drug efficacy. Theranostics 2013, 3, 116–126.

    Article  Google Scholar 

  12. Fenton, H. J. H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Trans. 1894, 65, 899–910.

    Article  Google Scholar 

  13. Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013, 13, 89.

    Article  Google Scholar 

  14. Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101–2106.

    Article  Google Scholar 

  15. Wang, J.; Liu, J.; Liu, Y.; Wang, L. M.; Cao, M. J.; Ji, Y. L.; Wu, X. C.; Xu, Y. Y.; Bai, B.; Miao, Q. et al. Gd-hybridized plasmonic Au-nanocomposites enhanced tumor-interior drug permeability in multimodal imaging-guided therapy. Adv. Mater. 2016, 28, 8950–8958.

    Article  Google Scholar 

  16. Yu, J.; Ju, Y. M.; Zhao, L. Y.; Chu, X.; Yang, W. L.; Tian, Y. L.; Sheng, F. G.; Lin, J.; Liu, F.; Dong, Y. H. et al. Multistimuli-regulated photochemothermal cancer therapy remotely controlled via Fe5C2 nanoparticles. ACS Nano 2016, 10, 159–169.

    Article  Google Scholar 

  17. Tian, Q. W.; Wang, Q.; Yao, K. X.; Teng, B. Y.; Zhang, J. Z.; Yang, S. P.; Han, Y. Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 2014, 10, 1063–1068.

    Article  Google Scholar 

  18. Wang, M. S.; He, L.; Xu, W. J.; Wang, X.; Yin, Y. D. Magnetic assembly and field-tuning of ellipsoidal-nanoparticlebased colloidal photonic crystals. Angew. Chem., Int. Ed. 2015, 54, 7077–7081.

    Article  Google Scholar 

  19. Xie, Y. Y.; Wang, J.; Wang, M. Z.; Ge, X. W. Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution. J Hazard. Mater. 2015, 297, 66–73.

    Article  Google Scholar 

  20. Chen, J. X.; Lei, S.; Xie, Y. Y.; Wang, M. Z.; Yang, J.; Ge, X. W. Fabrication of high-performance magnetic lysozymeimprinted microsphere and its NIR-responsive controlled release property. ACS Appl. Mater. Interfaces 2015, 7, 28606–28615.

    Article  Google Scholar 

  21. Yue, Q.; Li, J. L.; Luo, W.; Zhang, Y.; Elzatahry, A. A.; Wang, X. Q.; Wang, C.; Li, W.; Cheng, X. W.; Alghamdi, A. et al. An interface coassembly in biliquid phase: Toward core–shell magnetic mesoporous silica microspheres with tunable pore size. J. Am. Chem. Soc. 2015, 137, 13282–13289.

    Article  Google Scholar 

  22. Zhang, S. F.; Wu, W.; Xiao, X. H.; Zhou, J.; Ren, F.; Jiang, C. Z. Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles. Nanoscale Res. Lett. 2011, 6, 89.

    Article  Google Scholar 

  23. Cui, Z. M.; Chen, Z.; Cao, C. Y.; Jiang, L.; Song, W. G. A yolk-shell structured Fe2O3@mesoporous SiO2 nanoreactor for enhanced activity as a Fenton catalyst in total oxidation of dyes. Chem. Commun. 2013, 49, 2332–2334.

    Article  Google Scholar 

  24. Li, X.; Gai, F. Y.; Guan, B. Y.; Zhang, Y.; Liu, Y. L.; Huo, Q. S. Fe@C core–shell and Fe@C yolk–shell particles for effective removal of 4-chlorophenol. J. Mater. Chem. A 2015, 3, 3988–3994.

    Article  Google Scholar 

  25. Mao, G.-Y.; Bu, F.-X.; Wang, W.; Jiang, D.-M.; Zhao, Z.-J.; Zhang, Q.-H.; Jiang, J.-S. Synthesis and characterization of γ-Fe2O3/C nanocomposite as an efficient catalyst for the degradation of methylene blue. Desalin. Water Treat. 2016, 57, 9226–9236.

    Article  Google Scholar 

  26. Li, M. K.; Qiang, Z. M.; Pulgarin, C.; Kiwi, J. Accelerated methylene blue (MB) degradation by Fenton reagent exposed to UV or VUV/UV light in an innovative micro photoreactor. Appl. Catal. B: Environ. 2016, 187, 83–89.

    Article  Google Scholar 

  27. Moura, F. C. C.; Araujo, M. H.; Costa, R. C. C.; Fabris, J. D.; Ardisson, J. D.; Macedo, W. A. A.; Lago, R. M. Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere 2005, 60, 1118–1123.

    Article  Google Scholar 

  28. Liu, X. J.; Li, B.; Fu, F. F.; Xu, K. B.; Zou, R. J.; Wang, Q.; Zhang, B. J.; Chen, Z. G.; Hu, J. Q. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Dalton Trans. 2014, 43, 11709–11715.

    Article  Google Scholar 

  29. Cai, X. J.; Jia, X. Q.; Gao, W.; Zhang, K.; Ma, M.; Wang, S. G.; Zheng, Y. Y.; Shi, J. L.; Chen, H. R. A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy. Adv. Funct. Mater. 2015, 25, 2520–2529.

    Article  Google Scholar 

  30. Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

    Article  Google Scholar 

  31. Li, L. L.; Liang, K. X.; Hua, Z. T.; Zou, M.; Chen, K. Z.; Wang, W. A green route to water-soluble polyaniline for photothermal therapy catalyzed by iron phosphates peroxidase mimic. Polym. Chem. 2015, 6, 2290–2296.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Zhishen Ge of the Department of Polymer Science and Engineering of USTC, Prof. Yu Zhao of Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, and Prof. Yinfeng Qian of Department of Radiology, The First Affiliated Hospital of Anhui Medical University for their kind help in providing the 808 nm semiconductor laser device, adipose-derived stem cells, and the instruction of MRI testing, respectively. This work was supported by the National Natural Science Foundation of China (Nos. 51103143, 51173175, 51473152, and 51573174), the Fundamental Research Funds for the Central Universities (Nos. WK2060200012 and WK3450000001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mozhen Wang or Xuewu Ge.

Electronic supplementary material

12274_2017_1431_MOESM1_ESM.pdf

Catalase-imprinted Fe3O4/Fe@fibrous SiO2/polydopamine nanoparticles: An integrated nanoplatform of magnetic targeting, magnetic resonance imaging, and dual-mode cancer therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Lei, S., Zeng, K. et al. Catalase-imprinted Fe3O4/Fe@fibrous SiO2/polydopamine nanoparticles: An integrated nanoplatform of magnetic targeting, magnetic resonance imaging, and dual-mode cancer therapy. Nano Res. 10, 2351–2363 (2017). https://doi.org/10.1007/s12274-017-1431-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1431-8

Keywords

Navigation