Skip to main content
Log in

Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We address the composition-controlled synthesis of monodispersed AgPd alloy nanoparticles (NPs), their assembly for the first time on mesoporous graphitic carbon nitride (mpg-C3N4), and the unprecedented catalysis of mpg-C3N4@AgPd in the hydrolytic dehydrogenation of ammonia borane (AB) at room temperature. Monodispersed AgPd alloy NPs were synthesized using a high-temperature organic-phase surfactant-assisted protocol comprising the co-reduction of silver(I) acetate and palladium(II) acetylacetonate in the presence of oleylamine, oleic acid, and 1-octadecene. This protocol allowed the synthesis of four different compositions of AgPd alloy NPs. The AgPd alloy NPs were then assembled on mpg-C3N4, reduced graphene oxide, and Ketjenblack using a liquid-phase self-assembly method. Among the three supports tested, the mpg-C3N4@AgPd catalysts provided the best activity because of the Mott–Schottky effect, which was driven by the favorable work function difference between mpg-C3N4 and the metal NPs. Moreover, the activity of the mpg-C3N4@AgPd catalyst was further enhanced by an acetic acid treatment (AAt), and a record initial turnover frequency of 94.1 mol(hydrogen)·mol −1(catalyst) ·min−1 was obtained. Furthermore, the mpg-C3N4@Ag42Pd58-AAt catalyst also showed moderate durability for the hydrolysis of AB. This study also includes a wealth of kinetic data for the mpg-C3N4@AgPd-catalyzed hydrolysis of AB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European Commission Decision C. Horizon 2020—Work Programme 2016–2017, Secure, Clean and Efficient Energy [Online]. 2016. http://ec.europa.eu/research/participants/data/ ref/h2020/wp/2016_2017/main/h2020-wp1617-energy_en.pdf (accessed Aug 8, 2016).

  2. Züttel, A.; Remhof, A.; Borgschulte, A.; Friedrichs, O. Hydrogen: The future energy carrier. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 3329–3342.

    Article  Google Scholar 

  3. Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sust. Energ. Rev. 2012, 16, 3024–3033.

    Article  Google Scholar 

  4. Eberle, U.; Felderhoff, M.; Schü th, F. Chemical and physical solutions for hydrogen storage. Angew. Chem., Int. Ed. 2009, 48, 6608–6630.

    Article  Google Scholar 

  5. Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.

    Article  Google Scholar 

  6. Jiang, H.-L.; Singh, S. K.; Yan, J.-M.; Zhang, X.-B.; Xu, Q. Liquid-phase chemical hydrogen storage: Catalytic hydrogen generation under ambient conditions. ChemSusChem 2010, 3, 541–549.

    Article  Google Scholar 

  7. Demirci, U. B.; Miele, P. Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ. Sci. 2009, 2, 627–637.

    Article  Google Scholar 

  8. Umegaki, T.; Yan, J. M.; Zhang, X. B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Boron- and nitrogen-based chemical hydrogen storage materials. Int. J. Hydrogen Energ. 2009, 34, 2303–2311.

    Article  Google Scholar 

  9. Singh, A. K.; Singh, S.; Kumar, A. Hydrogen energy future with formic acid: A renewable chemical hydrogen storage system. Catal. Sci. Technol. 2016, 6, 12–40.

    Article  Google Scholar 

  10. Singh, S. K.; Xu, Q. Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen Storage. J. Am. Chem. Soc. 2009, 131, 18032–18033.

    Article  Google Scholar 

  11. Peng, B.; Chen, J. Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy Environ. Sci. 2008, 1, 479–483.

    Google Scholar 

  12. Zhu, Q. L.; Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 2015, 8, 478–512.

    Article  Google Scholar 

  13. Gutowska, A.; Li, L. Y.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W. et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem., Int. Ed. 2005, 44, 3578–3582.

    Article  Google Scholar 

  14. Sanyal, U.; Demirci, U. B.; Jadirgar, B. R.; Miele, P. Hydrolysis of ammonia borane as a hydrogen source: Fundamental issues and potential solutions towards implementation. ChemSusChem 2011, 4, 1731–1739.

    Article  Google Scholar 

  15. Staubitz, A.; Robertson, A. P. M.; Manners, I. Ammoniaborane and related compounds as dihydrogen sources. Chem. Rev. 2010, 110, 4079–4124.

    Article  Google Scholar 

  16. Graham, T. W.; Tsang, C. W.; Chen, X. H.; Guo, R. W.; Jia, W. L.; Liu, S. M.; Sui-Seng, C.; Ewart, C. B.; Lough, A.; Amoroso, D. et al. Catalytic solvolysis of ammonia borane. Angew. Chem., Int. Ed. 2010, 49, 8708–8711.

    Article  Google Scholar 

  17. Xu, Q.; Chandra, M. A portable hydrogen generation system: Catalytic hydrolysis of ammonia-borane. J. Alloys Compd. 2007, 446, 729–732.

  18. Jiang, H.-L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today. 2011, 170, 56–63.

    Article  Google Scholar 

  19. Zahmakiran, M.; Özkar, S. Transition metal nanoparticles in catalysis for the hydrogen generation from the hydrolysis of ammonia-borane. Top. Catal. 2013, 56, 1171–1183.

    Article  Google Scholar 

  20. Lu, Z. H.; Yao, Q. L.; Zhang, Z. J.; Yang, Y. W.; Chen, X. S. Nanocatalysts for hydrogen generation from ammonia borane and hydrazine borane. J. Nanomat. 2014, 2014, Article ID 729029.

    Article  Google Scholar 

  21. Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 2006, 156, 190–194.

    Article  Google Scholar 

  22. Singh, A. K.; Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 2013, 5, 652–676.

    Article  Google Scholar 

  23. Sun, D. H.; Mazumder, V.; Metin, Ö.; Sun, S. H. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. ACS Nano 2011, 5, 6458–6464.

    Article  Google Scholar 

  24. Çiftci, N. S.; Metin, Ö. Monodisperse nickel–palladium alloy nanoparticles supported on reduced graphene oxide as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrogen Energ. 2014, 39, 18863–18870.

    Article  Google Scholar 

  25. Güngörmez, K.; Metin, Ö. Composition-controlled catalysis of reduced graphene oxide supported CuPd alloy nanoparticles in the hydrolytic dehydrogenation of ammonia borane. Appl. Catal. A 2015, 494, 22–28.

    Article  Google Scholar 

  26. Zhang, S.; Metin, Ö.; Sun, D.; Sun, S. H. Monodisperse AgPd alloy nanoparticles and their superior catalysis in the formic acid dehydrogenation. Angew. Chem., Int. Ed. 2013, 52, 3681–3684.

    Article  Google Scholar 

  27. Metin, Ö.; Sun, X. L.; Sun, S. H. Monodisperse goldpalladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale 2013, 5, 910–912.

    Article  Google Scholar 

  28. Shang, N. Z.; Feng, C.; Gao, S. T.; Wang, C. Ag/Pd nanoparticles supported on amine-functionalized metal-organic framework for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energ. 2016, 41, 944–950.

    Article  Google Scholar 

  29. Tong, Y.; Lu, X. F.; Sun, W. N.; Nie, G. D.; Yang, L.; Wang, C. Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane. J. Power Sources 2014, 261, 221–226.

    Article  Google Scholar 

  30. Wang, Y.; Yao, J.; Li, H. R.; Su, D. S.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362–2365.

    Article  Google Scholar 

  31. Cuenya, B. R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 2010, 518, 3127–3150.

    Article  Google Scholar 

  32. Diyarbakir, S.; Can, H. S.; Metin, Ö. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the sonogashira cross-coupling reactions. ACS Appl. Mater. Interfaces 2015, 7, 3199–3206.

    Article  Google Scholar 

  33. Metin, Ö.; Ho, S. F.; Alp, C.; Can, H. S.; Mankin, M. N.; Gü ltekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki–Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18.

    Article  Google Scholar 

  34. Fan, Y. R.; Li, X. J.; He, X. C.; Zeng, C. M.; Fan, G. Y.; Liu, Q. Q.; Tang, D. M. Effective hydrolysis of ammonia borane catalyzed by ruthenium nanoparticles immobilized on graphic carbon nitride. Int. J. Hydrogen Energ. 2014, 39, 19982–19989.

    Article  Google Scholar 

  35. Li, X. H.; Wang, X. C.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 2012, 3, 2170–2174.

    Article  Google Scholar 

  36. Guo, L. T.; Cai, Y. Y.; Ge, J. M.; Zhang, Y. N.; Gong, L. H.; Li, X. H.; Wang, K. X.; Ren, Q. Z.; Su, J.; Chen, J. S. Multifunctional Au-Co@CN nanocatalyst for highly efficient hydrolysis of ammonia borane. ACS Catal. 2015, 5, 388–392.

    Article  Google Scholar 

  37. Cai, Y. Y.; Li, X.-H.; Zhang, Y.-N.; Wei, Z.; Wang, K.-X.; Chen, J.-S. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott–Schottky photocatalyst. Angew. Chem., Int. Ed. 2013, 52, 11822–11825.

    Article  Google Scholar 

  38. Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew. Chem., Int. Ed. 2006, 45, 4467–4471.

    Article  Google Scholar 

  39. Zheng, Y.; Liu, J.; Liang, J.; Joroniec, M.; Qiao, S. Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731.

    Article  Google Scholar 

  40. Di, Y.; Wang, X. C.; Thomas, A.; Antonietti, M. Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light. ChemCatChem 2010, 2, 834–838.

    Article  Google Scholar 

  41. Durap, F.; Metin, Ö. Monodisperse palladium nanoparticles supported on chemically derived graphene: Highly active and reusable nanocatalysts for Suzuki–Miyaura cross-coupling reactions. Turk. J. Chem. 2015, 39, 1247–1256.

    Article  Google Scholar 

  42. Senol, A. M.; Metin, O.; Acar, M.; Onganer, Y.; Meral, K. The interaction of fluorescent pyronin Y molecules with monodisperse silver nanoparticles in chloroform. J. Mol. Struc. 2016, 1103, 212–216.

    Article  Google Scholar 

  43. Xu, J.; Wu, H.-T.; Wang, X.; Xue, B.; Li, Y. X.; Cao, Y. A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Phys. Chem. Chem. Phys. 2013, 15, 4510–4517.

    Article  Google Scholar 

  44. Erdogan, D. A.; Sevim, M.; Kisa, E.; Emiroglu, D. B.; Karatok, M.; Vovk, E. I.; Bjerring, M.; Akbey, Ü.; Metin, Ö.; Özensoy, E. Photocatalytic activity of mesoporous graphitic carbon nitride (mpg-C3N4) towards organic chromophores under UV and VIS light illumination. Top. Catal. 2016, 59, 1305–1318.

    Article  Google Scholar 

  45. Metin, Ö.; Aydogan, S.; Meral, K. A new route for the synthesis of graphene oxide-Fe3O4 nanocomposites and their schottky diode applications. J. Alloys Compd. 2014, 585, 681–688.

    Article  Google Scholar 

  46. Metin, Ö.; Mazumder, V.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469.

    Article  Google Scholar 

  47. Metin, Ö.; Dinç, M.; Eren, Z. S.; Özkar, S. Silica embedded cobalt(0) nanoclusters: Efficient, stable and cost effective catalyst for hydrogen generation from the hydrolysis of ammonia borane. Int. J. Hydrogen Energ. 2011, 36, 11528–11535.

    Article  Google Scholar 

  48. Li, H.-J.; Sun, B.-W.; Sui, L.; Qian, D. J.; Chen, M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys. 2015, 17, 3309–3315.

    Article  Google Scholar 

  49. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics: Eden Prairie, Minnesota, USA, 1992.

    Google Scholar 

  50. Steiner, P.; Hü fner, S. Thermochemical analysis of PdxAg1–x alloys from XPS core-level binding energy shifts. Solid State Commun. 1981, 37, 79–81.

    Article  Google Scholar 

  51. Li, H.-X.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott–Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604.

    Article  Google Scholar 

  52. Rikken, G. L. J. A.; Braun, D.; Staring, E. G. J.; Demandt, R. Schottky effect at a metal-polymer interface. Appl. Phys. Lett. 1994, 65, 219–221.

    Article  Google Scholar 

  53. Zhan, W.-W.; Zhu, Q.-L.; Xu, Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal. 2016, 6, 6892–6905.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support by Turkish Academy of Sciences (TUBA) in the context of “Young Scientist Award Program (GEBIP)” is gratefully acknowledged. M. S. thanks to the the Scientific and Technological Research Council of Turkey (TUBITAK) for the fellowship. Finally, we thank to Dr. Emre Gür for his help on performing XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Önder Metin.

Electronic supplementary material

12274_2016_1345_MOESM1_ESM.pdf

Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahri, H., Sevim, M. & Metin, Ö. Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight. Nano Res. 10, 1627–1640 (2017). https://doi.org/10.1007/s12274-016-1345-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1345-x

Keywords

Navigation