Skip to main content
Log in

Hydrophilic bismuth sulfur nanoflower superstructures with an improved photothermal efficiency for ablation of cancer cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanomaterials with intense near-infrared (NIR) absorption exhibit effective photon-to-thermal energy transfer capabilities and can generate heat to ablate cancer cells, thus playing a pivotal role in photothermal cancer therapeutics. Herein, hydrophilic flower-like bismuth sulfur (Bi2S3) superstructures with uniform size and improved NIR absorption were controllably synthesized via a facile solvothermal procedure assisted by polyvinylpyrrolidone (PVP), which could adjust the product morphology. Induced by an 808-nm laser, the as-prepared Bi2S3 nanoflowers exhibited much higher photothermal conversion efficiency (64.3%) than that of Bi2S3 nanobelts (36.5%) prepared in the absence of PVP. This can be attributed not only to the Bi2S3 nanoflower superstructures assembled by 3-dimensional crumpled-paper-like nanosheets serving as many laser-cavity mirrors with improved reflectivity and absorption of NIR light but also to the amorphous structures with a lower band gap. Thus, to achieve the same temperature increase, the concentration or laser power density could be greatly reduced when using Bi2S3 nanoflowers compared to when using Bi2S3 nanobelts, which makes them more favorable for use in therapy due to decreased toxicity. Furthermore, these Bi2S3 nanoflowers effectively achieved photothermal ablation of cancer cells in vitro and in vivo. These results not only supported the Bi2S3 nanoflowers as a promising photothermal agent for cancer therapy but also paved an approach to exploit new agents with improved photothermal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

    Article  Google Scholar 

  2. Song, X. J.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015, 8, 340–354.

    Article  Google Scholar 

  3. Kang, S.; Bhang, S. H.; Hwang, S.; Yoon, J.-K.; Song, J.; Jang, H.-K.; Kim, S.; Kim, B.-S. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano 2015, 9, 9678–9690.

    Article  Google Scholar 

  4. Sugiura, T.; Matsuki, D.; Okajima, J.; Komiya, A.; Mori, S.; Maruyama, S.; Kodama, T. Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling. Nano Res. 2015, 8, 3842–3852.

    Article  Google Scholar 

  5. Xia, Y. N.; Li, W. Y.; Cobley, C. M.; Chen, J. Y.; Xia, X. H.; Zhang, Q.; Yang, M. X.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914–924.

    Article  Google Scholar 

  6. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    Article  Google Scholar 

  7. Song, G. S.; Shen, J.; Jiang, F. R.; Hu, R. G.; Li, W. Y.; An, L.; Zou, R. J.; Chen, Z. G.; Qin, Z. Y.; Hu, J. Q. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl. Mater. Interfaces 2014, 6, 3915–3922.

    Article  Google Scholar 

  8. Liu, Q.; Sun, C. Y.; He, Q.; Liu, D. B.; Khalil, A.; Xiang, T.; Wu, Z. Y.; Wang, J.; Song, L. Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chem. Commun. 2015, 51, 10054–10057.

    Article  Google Scholar 

  9. Bao, T.; Yin, W. Y.; Zheng, X. P.; Zhang, X.; Yu, J.; Dong, X. H.; Yong, Y.; Gao, F. P.; Yan, L.; Gu, Z. J. et al. Onepot synthesis of PEGylated plasmonic MoO3–x hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer. Biomaterials 2016, 76, 11–24.

    Article  Google Scholar 

  10. Song, G. S.; Hao, J. L.; Liang, C.; Liu, T.; Gao, M.; Cheng, L.; Hu, J. Q.; Liu, Z. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angew. Chem., Int. Ed. 2016, 55, 2122–2126.

    Article  Google Scholar 

  11. Chen, Z. G.; Wang, Q.; Wang, H. L.; Zhang, L. S.; Song, G. S.; Song, L. L.; Hu, J. Q.; Wang, H. Z.; Liu, J. S.; Zhu, M. F. et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 2013, 25, 2095–2100.

    Article  Google Scholar 

  12. Zhou, Z. G.; Kong, B.; Yu, C.; Shi, X. Y.; Wang, M. W.; Liu, W.; Sun, Y.; Zhang, Y. J.; Yang, H.; Yang, S. P. Tungsten oxide nanorods: An efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci. Rep. 2014, 4, 3653.

    Google Scholar 

  13. Qiu, J. J.; Xiao, Q. F.; Zheng, X. P.; Zhang, L. B.; Xing, H. Y.; Ni, D. L.; Liu, Y. Y.; Zhang, S. J.; Ren, Q. G.; Hua, Y. Q. et al. Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/ photodynamic/radiation synergistic cancer therapy. Nano Res. 2015, 8, 3580–3590.

    Article  Google Scholar 

  14. Liu, Z.; Liu, X. J.; Ran, X.; Ju, E. G.; Ren, J. S.; Qu, X. G. Single-layer tungsten oxide as intelligent photo-responsive nanoagents for permanent male sterilization. Biomaterials 2015, 69, 56–64.

    Article  Google Scholar 

  15. Xiao, Z. Y.; Jiang, X. H.; Li, B.; Liu, X. J.; Huang, X. J.; Zhang, Y. X.; Ren, Q. L.; Luo, J.; Qin, Z. Y.; Hu, J. Q. Hydrous RuO2 nanoparticles as an efficient NIR-light induced photothermal agent for ablation of cancer cells in vitro and in vivo. Nanoscale 2015, 7, 11962–11970.

    Article  Google Scholar 

  16. Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

    Article  Google Scholar 

  17. Tian, Q. W.; Tang, M. H.; Sun, Y. G.; Zou, R. J.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 2011, 23, 3542–3547.

    Article  Google Scholar 

  18. Tian, Q. W.; Hu, J. Q.; Zhu, Y. H.; Zou, R. J.; Chen, Z. G.; Yang, S. P.; Li, R. W.; Su, Q. Q.; Han, Y.; Liu, X. G. Sub-10 nm Fe3O4@Cu2 - x S core–shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 2013, 135, 8571–8577.

    Article  Google Scholar 

  19. Goel, S.; Chen, F.; Cai, W. B. Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics. Small 2014, 10, 631–645.

    Article  Google Scholar 

  20. Zhou, M.; Li, J. J.; Liang, S.; Sood, A. K.; Liang, D.; Li, C. Cus nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano 2015, 9, 7085–7096.

    Article  Google Scholar 

  21. Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed. 2013, 52, 4160–4164.

    Article  Google Scholar 

  22. Wang, S. G.; Chen, Y.; Li, X.; Gao, W.; Zhang, L. L.; Liu, J.; Zheng, Y. Y.; Chen, H. R.; Shi, J. L. Injectable 2D MoS2-integrated drug delivering implant for highly efficient NIR-triggered synergistic tumor hyperthermia. Adv. Mater. 2015, 27, 7117–7122.

    Article  Google Scholar 

  23. Kim, J.; Kim, H.; Kim, W. J. Single-layered MoS2-PEI-PEG nanocomposite-mediated gene delivery controlled by photo and redox stimuli. Small 2016, 12, 1184–1192.

    Article  Google Scholar 

  24. Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–93.

    Google Scholar 

  25. Liu, Q.; Sun, C. Y.; He, Q.; Khalil, A.; Xiang, T.; Liu, D. B.; Zhou, Y.; Wang, J.; Song, L. Stable metallic 1T-WS2 ultrathin nanosheets as a promising agent for near-infrared photothermal ablation cancer therapy. Nano Res. 2015, 8, 3982–3991.

    Article  Google Scholar 

  26. Yang, G. B.; Gong, H.; Liu, T.; Sun, X. Q.; Cheng, L.; Liu, Z. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imagingguided therapy of cancer. Biomaterials 2015, 60, 62–71.

    Article  Google Scholar 

  27. Cheng, L.; Yuan, C.; Shen, S. D.; Yi, X.; Gong, H.; Yang, K.; Liu, Z. Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics. ACS Nano 2015, 9, 11090–11101.

    Article  Google Scholar 

  28. Yong, Y.; Cheng, X. J.; Bao, T.; Zu, M.; Yan, L.; Yin, W. Y.; Ge, C. C.; Wang, D. L.; Gu, Z. J.; Zhao, Y. L. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 2015, 9, 12451–12463.

    Article  Google Scholar 

  29. Liu, Z.; Liang, X.-J. Nano-carbons as theranostics. Theranostics 2012, 2, 235–237.

    Article  Google Scholar 

  30. Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: The recent advances. Adv. Drug Deliv. Rev. 2013, 65, 1951–1963.

    Article  Google Scholar 

  31. Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.

    Article  Google Scholar 

  32. Mao, H. Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A. A.; Mahmoudi, M. Graphene: Promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev. 2013, 113, 3407–3424.

    Article  Google Scholar 

  33. Chen, M.; Fang, X. L.; Tang, S. H.; Zheng, N. F. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem. Commun. 2012, 48, 8934–8936.

    Article  Google Scholar 

  34. Gong, H.; Cheng, L.; Xiang, J.; Xu, H.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Near-infrared absorbing polymeric nanoparticles as a versatile drug carrier for cancer combination therapy. Adv. Funct. Mater. 2013, 23, 6059–6067.

    Article  Google Scholar 

  35. Wang, Y.; Xiao, Y.; Tang, R. K. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo. Chem.—Eur. J. 2014, 20, 11826–11834.

    Article  Google Scholar 

  36. Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E.-K.; Park, H.; Suh, J.-S.; Lee, K.; Yoo, K.-H.; Kim, E.-K. et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem., Int. Ed. 2011, 50, 441–444.

    Article  Google Scholar 

  37. Zhou, J.; Lu, Z. G.; Zhu, X. J.; Wang, X. J.; Liao, Y.; Ma, Z. F.; Li, F. Y. NIR photothermal therapy using polyaniline nanoparticles. Biomaterials 2013, 34, 9584–9592.

    Article  Google Scholar 

  38. Cui, J. B.; Jiang, R.; Xu, S. Y.; Hu, G. F.; Wang, L. Y. Cu7S4 nanosuperlattices with greatly enhanced photothermal efficiency. Small 2015, 11, 4183–4190.

    Article  Google Scholar 

  39. Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.

    Article  Google Scholar 

  40. Zhang, Z. J.; Wang, J.; Chen, C. Y. Near-infrared lightmediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 2013, 25, 3869–3880.

    Article  Google Scholar 

  41. Sun, H. Z. Biological Chemistry of Arsenic, Antimony and Bismuth; Wiley: Chichester, West Sussex, UK, 2011.

    Google Scholar 

  42. Mjos, K. D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev. 2014, 114, 4540–4563.

    Article  Google Scholar 

  43. Rabin, O.; Manuel Perez, J.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118–122.

    Article  Google Scholar 

  44. Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.

    Google Scholar 

  45. Zhang, X.-D.; Chen, J.; Min, Y.; Park, G. B.; Shen, X.; Song, S.-S.; Sun, Y.-M.; Wang, H.; Long, W.; Xie, J. P. et al. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv. Funct. Mater. 2014, 24, 1718–1729.

    Article  Google Scholar 

  46. Zheng, X. P.; Shi, J. X.; Bu, Y.; Tian, G.; Zhang, X.; Yin, W. Y.; Gao, B. F.; Yang, Z. Y.; Hu, Z. B.; Liu, X. F. et al. Silica-coated bismuth sulfide nanorods as multimodal contrast agents for a non-invasive visualization of the gastrointestinal tract. Nanoscale 2015, 7, 12581–12591.

    Article  Google Scholar 

  47. Song, G. S.; Liang, C.; Gong, H.; Li, M. F.; Zheng, X. C.; Cheng, L.; Yang, K.; Jiang, X. Q.; Liu, Z. Core–shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv. Mater. 2015, 27, 6110–6117.

    Article  Google Scholar 

  48. Song, G. S.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater. 2016, 28, 2716–2723.

    Article  Google Scholar 

  49. Liu, J.; Zheng, X. P.; Yan, L.; Zhou, L. J.; Tian, G.; Yin, W. Y.; Wang, L. M.; Liu, Y.; Hu, Z. B.; Gu, Z. J. et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano 2015, 9, 696–707.

    Article  Google Scholar 

  50. Wang, S. G.; Li, X.; Chen, Y.; Cai, X. J.; Yao, H. L.; Gao, W.; Zheng, Y. Y.; An, X.; Shi, J. L.; Chen, H. R. A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy. Adv. Mater. 2015, 27, 2775–2782.

    Article  Google Scholar 

  51. Ma, M.; Huang, Y.; Chen, H. R.; Jia, X. Q.; Wang, S. G.; Wang, Z. Z.; Shi, J. L. Bi2S3-embedded mesoporous silica nanoparticles for efficient drug delivery and interstitial radiotherapy sensitization. Biomaterials 2015, 37, 447–455.

    Article  Google Scholar 

  52. Song, G. S.; Wang, Q.; Wang, Y.; Lv, G.; Li, C.; Zou, R. J.; Chen, Z. G.; Qin, Z. Y.; Huo, K. K.; Hu, R. G. et al. A lowtoxic multifunctional nanoplatform based on Cu9S5@mSiO2 core–shell nanocomposites: Combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment. Adv. Funct. Mater. 2013, 23, 4281–4292.

    Article  Google Scholar 

  53. Li, B.; Zhang, Y. X.; Zou, R. J.; Wang, Q.; Zhang, B. J.; An, L.; Yin, F.; Hua, Y. Q.; Hu, J. Q. Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser. Dalton Trans. 2014, 43, 6244–6250.

    Article  Google Scholar 

  54. Liu, X. J.; Fu, F. F.; Xu, K. B.; Zou, R. J.; Yang, J. M.; Wang, Q.; Liu, Q.; Xiao, Z. Y.; Hu, J. Q. Folic acidconjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemophotothermal therapy of cancer cells. J. Mater. Chem. B 2014, 2, 5358–5367.

    Article  Google Scholar 

  55. Li, B.; Wang, Q.; Zou, R. J.; Liu, X. J.; Xu, K. B.; Li, W. Y.; Hu, J. Q. Cu7.2S4 nanocrystals: A novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale 2014, 6, 3274–3282.

    Article  Google Scholar 

  56. Liu, X. J.; Wang, Q.; Li, C.; Zou, R. J.; Li, B.; Song, G. S.; Xu, K. B.; Zheng, Y.; Hu, J. Q. Cu2-xSe@mSiO2-PEG core–shell nanoparticles: A low-toxic and efficient difunctional nanoplatform for chemo-photothermal therapy under near infrared light radiation with a safe power density. Nanoscale 2014, 6, 4361–4370.

    Article  Google Scholar 

  57. Liu, X. J.; Ren, Q. L.; Fu, F. F.; Zou, R. J.; Wang, Q.; Xin, G. B.; Xiao, Z. Y.; Huang, X. J.; Liu, Q.; Hu, J. Q. CuS@mSiO2-PEG core–shell nanoparticles as a NIR light responsive drug delivery nanoplatform for efficient chemophotothermal therapy. Dalton Trans. 2015, 44, 10343–10351.

    Article  Google Scholar 

  58. Li, B.; Ye, K. C.; Zhang, Y. X.; Qin, J. B.; Zou, R. J.; Xu, K. B.; Huang, X. J.; Xiao, Z. Y.; Zhang, W. J.; Lu, X. W. et al. Photothermal theragnosis synergistic therapy based on bimetal sulphide nanocrystals rather than nanocomposites. Adv. Mater. 2015, 27, 1339–1345.

    Article  Google Scholar 

  59. Song, C. X.; Wang, D. B.; Yang, T.; Hu, Z. S. Morphologycontrolled synthesis of Bi2S3 microstructures. CrystEngComm 2011, 13, 3087–3092.

    Article  Google Scholar 

  60. Chen, Z.; Cao, M. H. Synthesis, characterization, and hydrophobic properties of Bi2S3 hierarchical nanostructures. Mater. Res. Bull. 2011, 46, 555–562.

    Article  Google Scholar 

  61. Wang, X. Y.; Dong, Q.; Meng, Q. L.; Yang, J. Y.; Feng, W.; Han, X. K. Visible-light photochromic nanocomposite thin films based on polyvinylpyrrolidone and polyoxometalates supported on clay minerals. Appl. Surf. Sci. 2014, 316, 637–642.

    Article  Google Scholar 

  62. Nemamcha, A.; Rehspringer, J.-L.; Khatmi, D. Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution. J. Phys. Chem. B 2006, 110, 383–387.

    Article  Google Scholar 

  63. He, Z. L.; Que, W. X. Surface scattering and reflecting: The effect on light absorption or photocatalytic activity of TiO2 scattering microspheres. Phys. Chem. Chem. Phys. 2013, 15, 16768–16773.

    Article  Google Scholar 

  64. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641.

    Article  Google Scholar 

  65. Huang, X. H.; El-Sayed, M. A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongyi Qin or Junqing Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Xu, C., Jiang, X. et al. Hydrophilic bismuth sulfur nanoflower superstructures with an improved photothermal efficiency for ablation of cancer cells. Nano Res. 9, 1934–1947 (2016). https://doi.org/10.1007/s12274-016-1085-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1085-y

Keywords

Navigation