Skip to main content
Log in

Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2 microspheres for high-efficiency dye-sensitized solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 24 October 2016

Abstract

A facile inside-out Ostwald ripening route to the morphology-controlled preparation of TiO2 microspheres is developed. Here, TiO2 hollow microspheres (HM) and solid microspheres (SM) are prepared by adjusting the volume ratio of isopropanol (IPA) to acetylacetone (Acac) in the solvothermal process. During the formation process of HM, precipitation of solid cores, subsequent deposition of outer shells on the surface of cores, and simultaneous core dissolution and shell recrystallization are observed, which validate the inside-out Ostwald ripening mechanism. Design and optimization of the properties (pore size, surface area, and trap state) of TiO2 microspheres are vital to the high performance of dyesensitized solar cells (DSSCs). The optimized TiO2 microspheres (rHM and rSM) obtained by post-processing on recrystallization, possess large pore sizes, high surface areas and reduced trap states (Ti3+ and oxygen vacancy), and are thus ideal materials for photovoltaic devices. The power conversion efficiency of DSSCs fabricated using rHM photoanode is 11.22%, which is significantly improved compared with the 10.54% efficiency of the rSM-based DSSC. Our work provides a strategy for synthesizing TiO2 microspheres that simultaneously accommodate different physical properties, in terms of surface area, crystallinity, morphology, and mesoporosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

    Article  Google Scholar 

  2. Grätzel, M. All surface and no bulk. Nature 1991, 349, 740–741.

    Article  Google Scholar 

  3. Sauvage, F.; Chen, D. H.; Comte, P.; Huang, F. Z.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M. Dyesensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 2010, 4, 4420–4425.

    Article  Google Scholar 

  4. Hwang, S. H.; Yun, J.; Jang, J. Multi-shell porous TiO2 hollow nanoparticles for enhanced light harvesting in dyesensitized solar cells. Adv. Funct. Mater. 2014, 24, 7619–7626.

    Article  Google Scholar 

  5. Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

    Article  Google Scholar 

  6. Wu, X.; Lu, G. Q.; Wang, L. Z. Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application. Energy Environ. Sci. 2011, 4, 3565–3572.

    Article  Google Scholar 

  7. Xi, J. T.; Zhang, Q. F.; Xie, S. H.; Yodyingyong, S.; Park, K.; Sun, Y. M.; Li, J. Y.; Cao, G. Z. Fabrication of TiO2 aggregates by electrospraying and their application in dyesensitized solar cells. Nanosci. Nanotech. Let. 2011, 3, 690–696.

    Article  Google Scholar 

  8. Li, X. X.; Xiong, Y. J.; Li, Z. Q.; Xie, Y. Large-scale fabrication of TiO2 hierarchical hollow spheres. Inorg. Chem. 2006, 45, 3493–3495.

    Article  Google Scholar 

  9. Li, W. J.; Coppens, M. O. Synthesis and characterization of stable hollow Ti-silica microspheres with a mesoporous shell. Chem. Mater. 2005, 17, 2241–2246.

    Article  Google Scholar 

  10. Yang, H. G.; Zeng, H. C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 2004, 108, 3492–3495.

    Article  Google Scholar 

  11. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714.

    Article  Google Scholar 

  12. Oh, M. H.; Yu, T.; Yu, S. H.; Lim, B.; Ko, K. T.; Willinger, M. G.; Seo, D. H.; Kim, B. H.; Cho, M. G.; Park, J. H. et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 2013, 340, 964–968.

    Article  Google Scholar 

  13. Hu, L. H.; Dai, S. Y.; Weng, J.; Xiao, S. F.; Sui, Y. F.; Huang, Y.; Chen, S. H.; Kong, F. T.; Pan, X.; Liang, L. Y. et al. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. J. Phys. Chem. B 2007, 111, 358–362.

    Article  Google Scholar 

  14. Ding, Y.; Mo, L.-E.; Tao, L.; Ma, Y.-M.; Hu, L.-H.; Huang, Y.; Fang, X.-Q.; Yao, J.-X.; Xi, X.-W.; Dai, S.-Y. TiO2 nanocrystalline layer as a bridge linking TiO2 sub-microspheres layer and substrates for high-efficiency dye-sensitized solar cells. J. Power Sources 2014, 272, 1046–1052.

    Article  Google Scholar 

  15. Liu, B.; Liu, L.-M.; Lang, X.-F.; Wang, H.-Y.; Lou, X. W.; Aydil, E. S. Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy Environ. Sci. 2014, 7, 2592–2597.

    Article  Google Scholar 

  16. Garnweitner, G.; Antonietti, M.; Niederberger, M. Nonaqueous synthesis of crystalline anatase nanoparticles in simple ketones and aldehydes as oxygen-supplying agents. Chem. Commun. 2005, 397–399.

    Google Scholar 

  17. Yu, J. G.; Liu, W.; Yu, H. G. A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity. Cryst. Growth Des. 2008, 8, 930–934.

    Article  Google Scholar 

  18. Liu, B.; Zeng, H. C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small 2005, 1, 566–571.

    Article  Google Scholar 

  19. Zeng, H. C. Ostwald ripening: A synthetic approach for hollow nanomaterials. Curr. Nanosci. 2007, 3, 177–181.

    Article  Google Scholar 

  20. Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.

    Article  Google Scholar 

  21. Wang, Y.; Zhu, Q. S.; Zhang, H. G. Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template-free process. Chem. Commun. 2005, 5231–5233.

    Google Scholar 

  22. Zhao, Y. B.; Pan, F.; Li, H.; Zhao, D. X.; Liu, L.; Xu, G. Q.; Chen, W. Uniform mesoporous anatase–brookite biphase TiO2 hollow spheres with high crystallinity via Ostwald ripening. J. Phys. Chem. C 2013, 117, 21718–21723.

    Article  Google Scholar 

  23. Widoniak, J.; Eiden-Assmann, S.; Maret, G. Synthesis and characterisation of monodisperse zirconia particles. Eur. J. Inorg. Chem. 2005, 3149–3155.

    Google Scholar 

  24. Wu, W.; Zhang, S. F.; Zhou, J.; Xiao, X. H.; Ren, F.; Jiang, C. Z. Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres: A template- and surfactant-free solution-phase route, the growth mechanism, optical properties, and application as a photocatalyst. Chem.—Eur. J. 2011, 17, 9708–9719.

    Article  Google Scholar 

  25. Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395.

    Article  Google Scholar 

  26. Sugimoto, T.; Kojima, T. Formation mechanism of amorphous TiO2 spheres in organic solvents. 1. Roles of ammonia. J. Phys. Chem. C 2008, 112, 18760–18771.

    Article  Google Scholar 

  27. Ding, Y.; Zhou, L.; Mo, L. E.; Jiang, L.; Hu, L. H.; Li, Z. Q.; Chen, S. H.; Dai, S. Y. TiO2 microspheres with controllable surface area and porosity for enhanced light harvesting and electrolyte diffusion in dye-sensitized solar cells. Adv. Funct. Mater. 2015, 25, 5946–5953.

    Article  Google Scholar 

  28. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

    Article  Google Scholar 

  29. Shang, S. Q; Jiao, X. L.; Chen, D. R. Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties. ACS Appl. Mater. Interfaces 2012, 4, 860–865.

    Article  Google Scholar 

  30. Pan, J. H.; Wang, X. Z.; Huang, Q. Z.; Shen, C.; Koh, Z. Y.; Wang, Q.; Engel, A.; Bahnemann, D. W. Large-scale synthesis of urchin-like mesoporous TiO2 hollow spheres by targeted etching and their photoelectrochemical properties. Adv. Funct. Mater. 2014, 24, 95–104.

    Article  Google Scholar 

  31. Wang, S. B.; Pan, L.; Song, J. J.; Mi, W. B.; Zou, J. J.; Wang, L.; Zhang, X. W. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 2015, 137, 2975–2983.

    Article  Google Scholar 

  32. Singh, J.; Gusain, A.; Saxena, V.; Chauhan, A. K.; Veerender, P.; Koiry, S. P.; Jha, P.; Jain, A.; Aswal, D. K.; Gupta, S. K. XPS, UV–Vis, FTIR, and EXAFS studies to investigate the binding mechanism of N719 dye onto oxalic acid treated TiO2 and its implication on photovoltaic properties. J. Phys. Chem. C 2013, 117, 21096–21104.

    Article  Google Scholar 

  33. Pan, S. S.; Lu, W.; Zhao, Y. H.; Tong, W.; Li, M.; Jin, L. M.; Choi, J. Y.; Qi, F.; Chen, S. G.; Fei, L. F.; Yu, S. F. Selfdoped rutile titania with high performance for direct and ultrafast assay of H2O2. ACS Appl. Mater. Interfaces 2013, 5, 12784–12788.

    Article  Google Scholar 

  34. Kumar, C. P.; Gopal, N. O.; Wang, T. C.; Wong, M. S.; Ke, S. C. EPR investigation of TiO2 nanoparticles with temperature-dependent properties. J. Phys. Chem. B 2006, 110, 5223–5229.

    Article  Google Scholar 

  35. Ke, S. C.; Wang, T. C.; Wong, M. S.; Gopal, N. O. Low temperature kinetics and energetics of the electron and hole traps in irradiated TiO2 nanoparticles as revealed by EPR spectroscopy. J. Phys. Chem. B 2006, 110, 11628–11634.

    Article  Google Scholar 

  36. Ferber, J.; Luther, J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol. Energ. Mat. Sol. C. 1998, 54, 265–275.

    Article  Google Scholar 

  37. Zhang, H. M.; Yu, H.; Han, Y. H.; Liu, P. R.; Zhang, S. Q.; Wang, P.; Cheng, Y. B.; Zhao, H. J. Rutile TiO2 microspheres with exposed nano-acicular single crystals for dye-sensitized solar cells. Nano Res. 2011, 4, 938–947.

    Article  Google Scholar 

  38. Zhang, Q. F.; Myers, D.; Lan, J. L.; Jenekhe, S. A.; Cao, G. Z. Applications of light scattering in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14, 14982–14998.

    Article  Google Scholar 

  39. Heiniger, L.-P.; Giordano, F.; Moehl, T.; Grätzel, M. Mesoporous TiO2 beads offer improved mass transport for cobalt-based redox couples leading to high efficiency dyesensitized solar cells. Adv. Energy Mater. 2014, 4, 1400168.

    Article  Google Scholar 

  40. Kang, T. S.; Smith, A. P.; Taylor, B. E.; Durstock, M. F. Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett. 2009, 9, 601–606.

    Article  Google Scholar 

  41. Zhang, W. J.; Xie, Y.; Xiong, D. H.; Zeng, X. W.; Li, Z. H.; Wang, M. K.; Cheng, Y. B.; Chen, W.; Yan, K. Y.; Yang, S. H. TiO2 nanorods: A facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 9698–9704.

    Article  Google Scholar 

  42. Li, C. H.; Koenigsmann, C.; Ding, W. D.; Rudshteyn, B.; Yang, K. R.; Regan, K. P.; Konezny, S. J.; Batista, V. S.; Brudvig, G. W.; Schmuttenmaer, C. A. et al. Facet-dependent photoelectrochemical performance of TiO2 nanostructures: An experimental and computational study. J. Am. Chem. Soc. 2015, 137, 1520–1529.

    Article  Google Scholar 

  43. Wu, X.; Chen, Z. G.; Lu, G. Q.; Wang, L. Z. Nanosized anatase TiO2 single crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of dye-sensitized solar cells. Adv. Funct. Mater. 2011, 21, 4167–4172.

    Article  Google Scholar 

  44. Chen, D. H.; Huang, F. Z.; Cheng, Y.-B.; Caruso, R. A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for highperformance dye-sensitized solar cells. Adv. Mater. 2009, 21, 2206–2210.

    Article  Google Scholar 

  45. Oekermann, T.; Zhang, D. S.; Yoshida, T.; Minoura, H. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 2004, 108, 2227–2235.

    Article  Google Scholar 

  46. Ding, Y.; Ma, Y. M.; Tao, L.; Hu, L. H.; Li, G.; Jiang, L.; Li, Z. Q.; Mo, L. E.; Yao, J. X.; Dai, S. Y. Continuous electron transport pathways constructed in TiO2 sub-microsphere films for high-performance dye-sensitized solar cells. RSC Adv. 2015, 5, 17493–17500.

    Article  Google Scholar 

  47. Thapa, A.; Zai, J. T.; Elbohy, H.; Poudel, P.; Adhikari, N.; Qian, X. F.; Qiao, Q. Q. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells. Nano Res. 2014, 7, 1154–1163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linhua Hu or Songyuan Dai.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12274-016-1336-y.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Xia, X., Chen, W. et al. Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2 microspheres for high-efficiency dye-sensitized solar cells. Nano Res. 9, 1891–1903 (2016). https://doi.org/10.1007/s12274-016-1081-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1081-2

Keywords

Navigation