Skip to main content
Log in

Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Planar micro-supercapacitors (MSCs) have drawn extensive research attention owing to their unique structural design and size compatibility for microelectronic devices. Graphene has been widely used to improve the performance of microscale electrochemical capacitors. However, investigations of an intrinsic electrochemical mechanism for graphene-based microscale devices are still not sufficient. Here, micro-supercapacitors with various typical architectures are fabricated as models to study the graphene effect, and their electrochemical performance is also evaluated. The results show that ionic accessibility and adsorption are greatly improved after the introduction of the holey graphene intermediate layer. This study provides a new route to understand intrinsic electrochemical behaviors and possesses exciting potential for highly efficient on-chip micro-energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  Google Scholar 

  2. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  Google Scholar 

  3. Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

    Article  Google Scholar 

  4. Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 2014, 7, 867–884.

    Article  Google Scholar 

  5. Wu, Z.-S.; Feng, X.; Cheng, H.-M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 2014, 1, 277–292.

    Article  Google Scholar 

  6. Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

    Google Scholar 

  7. Han, C. H.; Pi, Y. Q.; An, Q. Y.; Mai, L. Q.; Xie, J. L.; Xu, X.; Xu, L.; Zhao, Y. L.; Niu, C. J.; Khan, A. M. et al. Substrate-aßsisted self-organization of radial ß-AgVO3 nanowire clusters for high rate rechargeable lithium batteries. Nano Lett. 2012, 12, 4668–4673.

    Article  Google Scholar 

  8. Simon, P.; Gogotsi, Y.; Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Google Scholar 

  9. Meng, C. Z.; Maeng, J.; John, S. W. M.; Irazoqui, P. P.; Ultrasmall integrated 3D micro-supercapacitors solve energy storage for miniature devices. Adv. Energy Mater. 2014, 4, 1301269.

    Article  Google Scholar 

  10. Aboutalebi, S. H.; Chidembo, A. T.; Salari, M.; Konstantinov, K.; Wexler, D.; Liu, H. K.; Dou, S. X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 2011, 4, 1855–1865.

    Article  Google Scholar 

  11. Wu, Z.-S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphenebased in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

    Google Scholar 

  12. Wang, K.; Wu, H. P.; Meng, Y. N.; Wei, Z. X. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10, 14–31.

    Article  Google Scholar 

  13. Liu, W. W.; Lu, C. X.; Wang, X. L.; Tay, R. Y.; Tay, B. K. High-performance microsupercapacitors based on twodimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. ACS Nano 2015, 9, 1528–1542.

    Article  Google Scholar 

  14. Wang, K.; Zou, W. J.; Quan, B. G.; Yu, A. F.; Wu, H. P.; Jiang, P.; Wei, Z. X. An all-solid-state flexible micro-supercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068–1072.

    Article  Google Scholar 

  15. Frackowiak, E.; Khomenko, V.; Jurewicz, K.; Lota, K.; Béguin, F. Supercapacitors based on conducting polymers/ nanotubes composites. J. Power Sources 2006, 153, 413–418.

    Article  Google Scholar 

  16. Ryu, K. S.; Kim, K. M.; Park, N. G.; Park, Y. J.; Chang, S. H. Symmetric redox supercapacitor with conducting polyaniline electrodes. J. Power Sources 2002, 103, 305–309.

    Article  Google Scholar 

  17. Hu, H. B.; Zhang, K.; Li, S. X.; Ji, S. L.; Ye, C. H. Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. J. Mater. Chem. A 2014, 2, 20916–20922.

    Article  Google Scholar 

  18. Oueiny, C.; Berlioz, S.; Perrin, F. X. Carbon nanotubepolyaniline composites. Prog. Polym. Sci. 2014, 39, 707–748.

    Article  Google Scholar 

  19. Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.; Wang, X. Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. 2009, 11, 1158–1161.

    Article  Google Scholar 

  20. Xiong, G. P.; Meng, C. Z.; Reifenberger, R. G.; Irazoqui, P. P.; Fisher, T. S. Graphitic petal electrodes for all-solid-state flexible supercapacitors. Adv. Energy Mater. 2014, 4, 1300515.

    Article  Google Scholar 

  21. Kumar, N. A.; Baek, J. B. Electrochemical supercapacitors from conducting polyaniline-graphene platforms. Chem. Commun. 2014, 50, 6298–6308.

    Article  Google Scholar 

  22. Lin, H. J.; Li, L.; Ren, J.; Cai, Z. B.; Qiu, L. B.; Yang, Z. B.; Peng, H. S. Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Sci. Rep. 2013, 3, 1353.

    Google Scholar 

  23. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

    Article  Google Scholar 

  24. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  25. Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 2011, 5, 8739–8749.

    Article  Google Scholar 

  26. Tagowska, M.; Palys, B.; Jackowska, K. Polyaniline nanotubules-anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy. Synthetic Met. 2004, 142, 223–229.

    Article  Google Scholar 

  27. Xu, W. W.; Zhao, K. N.; Niu, C. J.; Zhang, L.; Cai, Z. Y.; Han, C. H.; He, L.; Shen, T.; Yan, M. Y.; Qu, L. B. et al. Heterogeneous branched core–shell SnO2-PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries. Nano Energy 2014, 8, 196–204.

    Article  Google Scholar 

  28. Zhang, J. T.; Jiang, J. W.; Li, H. L.; Zhao, X. S. A highperformance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 2011, 4, 4009–4015.

    Google Scholar 

  29. Wu, Q.; Xu, Y. X.; Yao, Z. Y.; Liu, A. R.; Shi, G. Q. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010, 4, 1963–1970.

    Article  Google Scholar 

  30. Urbonaite, S.; Hälldahl, L.; Svensson, G. Raman spectroscopy studies of carbide derived carbons. Carbon 2008, 46, 1942–1947.

    Article  Google Scholar 

  31. Fan, Z. J.; Zhao, Q. K.; Li, T. Y.; Yan, J.; Ren, Y. M.; Feng, J.; Wei, T. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 2012, 50, 1699–1703.

    Article  Google Scholar 

  32. Lu, M. Supercapacitors: Materials, Systems, and Applications; John Wiley & Sons: Weinheim, Germany, 2013.

    Google Scholar 

  33. Zhang, C.; Lv, W.; Tao, Y.; Yang, Q. H. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 2015, 8, 1390–1403.

    Article  Google Scholar 

  34. Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72–78.

    Article  Google Scholar 

  35. Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

    Article  Google Scholar 

  36. El-Kady, M. F.; Kaner, R. B. Scalable fabrication of highpower graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

    Article  Google Scholar 

  37. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

    Article  Google Scholar 

  38. Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.

    Article  Google Scholar 

  39. Chen, Z.; Wen, J.; Yan, C. Z.; Rice, L.; Sohn, H.; Shen, M. Q.; Cai, M.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on hierarchically porous graphite particles. Adv. Energy Mater. 2011, 1, 551–556.

    Article  Google Scholar 

  40. Zhang, D. C.; Zhang, X.; Chen, Y.; Yu, P.; Wang, C. H.; Ma, Y. W. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J. Power Sources 2011, 196, 5990–5996.

    Article  Google Scholar 

  41. Lu, T.; Zhang, Y. P.; Li, H. B.; Pan, L. K.; Li, Y. L.; Sun, Z. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochim. Acta 2010, 55, 4170–4173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Xu or Liqiang Mai.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Xiao, B., Xu, X. et al. Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Res. 9, 1012–1021 (2016). https://doi.org/10.1007/s12274-016-0989-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0989-x

Keywords

Navigation