Skip to main content
Log in

Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array

Nano Research Aims and scope Submit manuscript

Abstract

Photoanodes, which are used in photoelectrochemical (PEC) water splitting, have been shown to be applicable in the construction of a PEC biosensing platform. This was realized by replacing water oxidization with oxidation of an appropriate test molecule. Here, we have demonstrated the feasibility of adopting photoanodes consisting of zinc oxide nanorods arrays decorated with plasmonic gold nanoparticles (Au NPs@ZnO NRs) for the self-powered PEC bioanalysis of glutathione (GSH) in phosphate-buffered saline (PBS) at an applied bias potential of 0 V vs. Ag/AgCl. This heterostructure exhibited enhanced PEC properties because of the introduction of the Au/ZnO interface. Under visible light illumination, hot electrons from surface-plasmon resonance (SPR) at the Au NP surface were injected into the adjacent ZnO and subsequently driven to the photocathode. Under ultraviolet (UV) light illumination, the photogenerated electrons in ZnO tended to transfer to the fluorine-doped tin oxide due to the step-wise energy band structure and the upward energy band bending at the ZnO/ electrolyte interface. These results indicate that plasmonic metal/semiconductor heterostructure photoanodes have great potential for self-powered PEC bioanalysis applications and extended field of other photovoltaic beacons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bequerel, E. Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen descourants électriques. C. R. Acad. Sci. 1839, 9, 145–149.

    Google Scholar 

  2. Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

    Article  Google Scholar 

  3. Bard, A. J. Photoelectrochemistry. Science 1980, 207, 139–144.

    Article  Google Scholar 

  4. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  5. Wang, G. M.; Yang, X. Y.; Qian, F.; Zhang, J. Z.; Li, Y. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 2010, 10, 1088–1092.

    Article  Google Scholar 

  6. Yang, X. Y.; Wolcott, A.; Wang, G. M.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9, 2331–2336.

    Article  Google Scholar 

  7. Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Photoelectrochemical DNA biosensors. Chem. Rev. 2014, 114, 7421–7441.

    Article  Google Scholar 

  8. Gill, R.; Zayats, M.; Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem., Int. Ed. 2008, 47, 7602–7625.

    Article  Google Scholar 

  9. Kang, Z.; Gu, Y. S.; Yan, X. Q.; Bai, Z. M.; Liu, Y. H.; Liu, S.; Zhang, X. H.; Zhang, Z.; Zhang, X. J.; Zhang, Y. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosen. Bioelectro. 2015, 64, 499–504.

    Article  Google Scholar 

  10. Yue, Z.; Lisdat, F.; Parak, W. J.; Hickey, S. G.; Tu, L. P.; Sabir, N.; Dorfs, D.; Bigall, N. C. Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Inter. 2013, 5, 2800–2814.

    Article  Google Scholar 

  11. Freeman, R.; Girsh, J.; Willner, I. Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing. ACS Appl. Mater. Inter. 2013, 5, 2815–2834.

    Article  Google Scholar 

  12. Kang, Z.; Yan, X. Q.; Wang, Y. F.; Bai, Z. M.; Liu, Y. C.; Zhang, Z.; Lin, P.; Zhang, X. H.; Yuan, H. G.; Zhang, X. J. et al. Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application. Sci. Rep. 2015, 5, 7882.

  13. Yan, K.; Wang, R.; Zhang, J. D. A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode. Biosens. Bioelectro. 2014, 53, 301–304.

    Article  Google Scholar 

  14. Zhang, X. R.; Liu, M. S.; Liu, H. X.; Zhang, S. S. Lowtoxic Ag2S quantum dots for photoelectrochemical detection glucose and cancer cells. Biosens. Bioelectro. 2014, 56, 307–312.

    Article  Google Scholar 

  15. Zhao, W.-W.; Liu, Z.; Shan, S.; Zhang, W.-W.; Wang, J.; Ma, Z.-Y.; Xu, J.-J.; Chen, H.-Y. Bismuthoxyiodide nanoflakes/titania nanotubes arrayed p-n heterojunction and its application for photoelectrochemical bioanalysis. Sci. Rep. 2014, 4, 4426.

    Google Scholar 

  16. Li, W. L.; Sheng, P. T.; Cai, J.; Feng, H. Y.; Cai, Q. Y. Highly sensitive and selective photoelectrochemical biosensor platform for polybrominated diphenyl ether detection using the quantum dots sensitized three-dimensional, macroporous ZnO nanosheet photoelectrode. Biosens. Bioelectro. 2014, 61, 209–214.

    Article  Google Scholar 

  17. Tang, J.; Kong, B.; Wang, Y. C.; Xu, M.; Wang, Y. L.; Wu, H.; Zheng, G. F. Photoelectrochemical detection of glutathione by IrO2–hemin–TiO2 nanowire arrays. Nano Lett. 2013, 13, 5350–5354.

    Article  Google Scholar 

  18. Zhan, W.-W.; Kuang, Q.; Zhou, J.-Z.; Kong, X.-J.; Xie, Z.-X.; Zheng, L.-S. Semiconductor@metal–organic framework core–shell heterostructures: A case of ZnO@ ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 2013, 135, 1926–1933.

    Article  Google Scholar 

  19. Zhao, X. M.; Zhou, S. W.; Shen, Q. M.; Jiang, L.-P.; Zhu, J.-J. Fabrication of glutathione photoelectrochemical biosensor using graphene–CdS nanocomposites. Analyst 2012, 137, 3697–3703.

    Article  Google Scholar 

  20. Zhang, X. R.; Li, S. G.; Jin, X.; Zhang, S. S. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers. Chem. Comm. 2011, 47, 4929–4931.

    Article  Google Scholar 

  21. Zhang, Z. H.; Zhang, L. B.; Hedhili, M. N.; Zhang, H. N.; Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14–20.

    Article  Google Scholar 

  22. Pu, Y.-C.; Wang, G. M.; Chang, K.-D.; Ling, Y. C.; Lin, Y.-K.; Fitzmorris, B. C.; Liu, C.-M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.

    Article  Google Scholar 

  23. Liu, L. P.; Wang, G. M.; Li, Y.; Li, Y. D.; Zhang, J. Z. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Res. 2011, 4, 249–258.

    Article  Google Scholar 

  24. Chen, H. M.; Chen, C. K.; Chen, C.-J.; Cheng, L.-C.; Wu, P. C.; Cheng, B. H.; Ho, Y. Z.; Tseng, M. L.; Hsu, Y.-Y.; Chan, T.-S. et al. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. ACS Nano 2012, 6, 7362–7372.

    Article  Google Scholar 

  25. Zhang, X.; Liu, Y.; Kang, Z. H. 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for highperformance photoelectrochemical water splitting. ACS Appl. Mater. Inter. 2014, 6, 4480–4489.

    Article  Google Scholar 

  26. Wang, T.; Lv, R.; Zhang, P.; Li, C. J.; Gong, J. L. Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 2015, 7, 77–81.

    Article  Google Scholar 

  27. Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.

    Article  Google Scholar 

  28. Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

    Article  Google Scholar 

  29. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

    Article  Google Scholar 

  30. Kang, Z.; Yan, X. Q.; Zhao, L. Q.; Liao, Q. L.; Zhao, K.; Du, H. W.; Zhang, X. H.; Zhang, X. J.; Zhang, Y. Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. Nano Res. 2015, 8, 2004–2014.

    Article  Google Scholar 

  31. Kruse, N.; Chenakin, S. XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects. Appl. Catal. A-Gen. 2011, 391, 367–376.

    Article  Google Scholar 

  32. Zhang, X. T.; Liu, Y. C.; Zhang, J. Y.; Lu, Y. M.; Shen, D. Z.; Fan, X. W.; Kong, X. G. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films. J. Cryst. Growth 2003, 254, 80–85.

    Article  Google Scholar 

  33. Leng, W. H.; Zhang, Z.; Zhang, J. Q.; Cao, C. N. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B 2005, 109, 15008–15023.

    Article  Google Scholar 

  34. Wang, M. Y.; Sun, L.; Lin, Z. Q.; Cai, J. H.; Xie, K. P.; Lin, C. Q. p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 2013, 6, 1211–1220.

    Article  Google Scholar 

  35. Ouyang, L.; Zhu, L. H.; Jiang, J. Z.; Tang, H. Q. A surfaceenhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe. Anal. Chim. Acta 2014, 816, 41–49.

    Article  Google Scholar 

  36. Yang, K.; Wang, H.; Zou, K.; Zhang, X. H. Gold nanoparticle modified silicon nanowires as biosensors. Nanotechnology 2006, 17, S276.

  37. Ndamanisha, J. C.; Bai, J.; Qi, B.; Guo, L. P. Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Anal. Biochem. 2009, 386, 79–84.

    Article  Google Scholar 

  38. Wang, Y.; Lu, J.; Tang, L. H.; Chang, H. X.; Li, J. H. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal. Chem. 2009, 81, 9710–9715.

    Article  Google Scholar 

  39. Tu, W. W.; Dong, Y. T.; Lei, J. P.; Ju, H. X. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles. Anal. Chem. 2010, 82, 8711–8716.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Z., Yan, X., Wang, Y. et al. Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array. Nano Res. 9, 344–352 (2016). https://doi.org/10.1007/s12274-015-0913-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0913-9

Keywords

Navigation