Skip to main content
Log in

Nontoxic virus nanofibers improve the detection sensitivity for the anti-p53 antibody, a biomarker in cancer patients

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The presence of anti-p53 antibody in serum is a biomarker for cancer. However, its high sensitivity detection is still an issue in cancer diagnosis. To tackle this challenge, we used fd phage, a human-safe bacteria-specific virus nanofiber that can be mass-produced by infecting host bacteria in an error-free manner, and genetically engineered it to display a peptide capable of recognizing and capturing anti-p53 antibody on its side wall. We employed the resultant phage nanofibers as a capture probe to develop a modified version of the enzyme-linked immunosorbent assay (ELISA) method, termed phage-ELISA. We compared it to the traditional ELISA method for the detection of anti-p53 antibody, p53-ELISA, which uses recombinant wild-type p53 protein to capture anti-p53 antibody. We applied phage-ELISA to detect anti-p53 antibody in an experimental group of 316 patients with various types of malignant tumors. We found that a detection rate of 17.7% (56 positive cases) was achieved by phage-ELISA, which was comparable to the detection rate of 20.6% for p53-ELISA (65 positive cases). However, when both phage and p53 were combined to form antibody-capturing probes for phage/p53-ELISA, a detection rate of 30.4% (96 positive cases) was achieved. Our work showed that owing to the combined capture of the anti-p53 antibody by both phage nanofibers and p53, the phage/p53-ELISA achieved the highest diagnostic accuracy and detection efficiency for the anti-p53 antibody in patients with various types of cancers. Our work suggests that a combination of nanofibers and antigens, both of which capture antibody, could lead to increased detection sensitivity, which is useful for applications in the life sciences, clinical medicine, and environmental sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C. C. p53 mutations in human cancers. Science 1991, 253, 49–53.

    Article  Google Scholar 

  2. Levine, A. J.; Momand, J.; Finlay, C. A. The p53 tumour suppressor gene. Nature 1991, 351, 453–456.

    Article  Google Scholar 

  3. Soussi, T. p53 antibodies in the sera of patients with various types of cancer: A review. Cancer Res. 2000, 60, 1777–1788.

    Google Scholar 

  4. Lara, J. F.; Thor, A. D.; Dressler, L. G.; Broadwater, G.; Bleiweiss, I. J.; Edgerton, S.; Cowan, D.; Goldstein, L. J.; Martino, S.; Ingle, J. N. et al. p53 expression in nodepositive breast cancer patients: Results from the cancer and leukemia group B 9344 trial. Clin. Cancer Res. 2011, 17, 5170–5178.

    Google Scholar 

  5. Lubin, R.; Zalcman, G.; Bouchet, L.; Tré danel, J.; Legros, Y.; Cazals, D.; Hirsch, A.; Soussi, T. Serum p53 antibodies as early markers of lung cancer. Nature Med. 1995, 1, 701–702.

    Article  Google Scholar 

  6. Mao, C. B.; Liu, A. H.; Cao, B. R. Virus-based chemical and biological sensing. Angew. Chem., Int. Ed. 2009, 48, 6790–6810.

    Article  Google Scholar 

  7. Singh, A.; Arutyunov, D.; Szymanski, C. M.; Evoy, S. Bacteriophage based probes for pathogen detection. Analyst 2012, 137, 3405–3421.

    Article  Google Scholar 

  8. Abbineni, G.; Modali, S.; Safiejko-Mroczka, B.; Petrenko, V. A.; Mao, C. Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization. Mol. Pharm. 2010, 7, 1629–1642.

    Article  Google Scholar 

  9. Marvin, D. A.; Hale, R. D.; Nave, C.; Helmer-Citterich, M. Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages: Ff (fd, f1, M13), If1 and IKe. J. Mol. Biol. 1994, 235, 260–286.

    Article  Google Scholar 

  10. Mao, C. B.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A. M. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004, 303, 213–217.

    Article  Google Scholar 

  11. Smith G. P.; Petrenko, V. A. Phage display. Chem. Rev. 1997, 97, 391–410.

    Article  Google Scholar 

  12. Scott, J. K.; Smith, G. P. Searching for peptide ligands with an epitope library. Science 1990, 249, 386–390.

    Article  Google Scholar 

  13. Smith, G. P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317.

    Article  Google Scholar 

  14. Yu, D. H.; Li, J. H.; Wang, Y. C.; Xu, J. G.; Pan, P. T.; Wang, L. Serum anti-p53 antibody detection in carcinomas and the predictive values of serum p53 antibodies, carcino-embryonic antigen and carbohydrate antigen 12–5 in the neoadjuvant chemotherapy treatment for III stage non-small cell lung cancer patients. Clin. Chim. Acta 2011, 412, 930–935.

    Article  Google Scholar 

  15. Sauer, M.; Bretz, A. C.; Beinoraviciute-Kellner, R.; Beitzinger, M.; Burek, C.; Rosenwald, A.; Harms, G. S.; Stiewe, T. C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity. Nucleic Acids Res. 2008, 36, 1900–1912.

    Article  Google Scholar 

  16. Wang, F. K.; Cao, B. R.; Mao, C. B. Bacteriophage bundles with prealigned Ca2+ initiate the oriented nucleation and growth of hydroxylapatite. Chem. Mater. 2010, 22, 3630–3636.

    Article  Google Scholar 

  17. Anderson, K. S.; Wong, J.; Vitonis, A.; Crum, C. P.; Sluss, P. M.; Labaer, J.; Cramer, D. p53 autoantibodies as potential detection and prognostic biomarkers in serous ovarian cancer. Cancer Epidemiol. Biomarkers. Prev. 2010, 19, 859–868.

    Article  Google Scholar 

  18. McNeil, S. A.; Halperin, S. A.; Langley, J. M.; Smith, B.; Warren, A.; Sharratt, G. P.; Baxendale, D. M.; Reddish, M. A.; Hu, M. C.; Stroop, S. D. et al. Safety and immunogenicity of 26-valent group a streptococcus vaccine in healthy adult volunteers. Clin. Infect. Dis. 2005, 41, 1114–1122.

    Article  Google Scholar 

  19. Chapman, C. J.; Murray, A.; McElveen, J. E.; Sahin, U.; Luxemburger, U.; Tü reci, O.; Wiewrodt, R.; Barnes, A. C.; Robertson, J. F. Autoantibodies in lung cancer: Possibilities for early detection and subsequent cure. Thorax 2008, 63, 228–233.

    Article  Google Scholar 

  20. Zhang, J. Y.; Casiano, C. A.; Peng, X. X.; Koziol, J. A.; Chan, E. K.; Tan, E. M. Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol. Biomarkers. Prev. 2003, 12, 136–143.

    Google Scholar 

  21. Zweig, M. H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577.

    Google Scholar 

  22. Metz, C. E. Basic principles of ROC analysis. Semin. Nucl. Med. 1978, 8, 283–298.

    Article  Google Scholar 

  23. Griner, P. F.; Mayewski, R. J.; Mushlin, A. I.; Greenland, P. Selection and interpretation of diagnostic tests and procedures. Principles and applications. Ann. Intern. Med. 1981, 94, 557–592.

    Google Scholar 

  24. Lubin, R.; Schlichtholz, B.; Bengoufa, D.; Zalcman, G.; Tré daniel, J.; Hirsch, A.; Caron de Fromentel, C.; Preudhomme, C.; Fenaux, P.; Fournier, G. et al. Analysis of p53 antibodies in patients with various cancers define B-cell epitopes of human p53: Distribution on primary structure and exposure on protein surface. Cancer Res. 1993, 53, 5872–5876.

    Google Scholar 

  25. Schlichtholz, B.; Tré daniel, J.; Lubin, R.; Zalcman, G.; Hirsch, A.; Soussi, T. Analyses of p53 antibodies in sera of patients with lung carcinoma define immunodominant regions in the p53 protein. Brit. J. Cancer 1994, 69, 809–816.

    Article  Google Scholar 

  26. di Marzo Veronese, F.; Willis, A. E.; Boyer-Thompson, C.; Appella, E.; Perham, R. N. Structural mimicry and enhanced immunogenicity of peptide epitopes displayed on filamentous bacteriophage: The V3 loop of HIV-1 gp120. J. Mol. Biol. 1994, 243, 167–172.

    Article  Google Scholar 

  27. Vennegoor, C. J. M.; Nijman, H. W.; Drijfhout, J. W.; Vernie, L.; Verstraeten, R. A.; von Mensdorff-Pouilly, S.; Hilgers, J.; Verheijen, R. H. M.; Kast, W. M.; Melief, C. J. M. et al. Autoantibodies to p53 in ovarian cancer patients and healthy women: A comparison between whole p53 protein and 18-mer peptides for screening purposes. Cancer Lett. 1997, 116, 93–101.

    Article  Google Scholar 

  28. Giovanni, M.; Setyawati, M. I.; Tay, C. Y.; Qian, H.; Kuan, W. S.; Leong, D. T. Electrochemical quantification of Escherichia coli with DNA nanostructure. Adv Funct. Mater. 2015, 25, 3840–3846.

    Article  Google Scholar 

  29. Yuan, L.; Giovanni, M.; Xie, J. P.; Fan, C. H.; Leong, D. T. Ultrasensitive IgG quantification using DNA nano-pyramids. NPG Asia Mater. 2014, 6, e112.

    Article  Google Scholar 

  30. Ralhan, R.; Arora, S.; Chattopadhyay, T. K.; Shukla, N. K.; Mathur, M. Circulating p53 antibodies, p53 gene mutational profile and product accumulation in esophageal squamouscell carcinoma in India. Int. J. Cancer 2000, 85, 791–795.

    Article  Google Scholar 

  31. Shimada, H.; Ochiai, T.; Nomura, F. Titration of serum p53 antibodies in 1085 patients with various types of malignant tumors: A multiinstitutional analysis by the Japan p53 antibody research group. Cancer 2003, 97, 682–689.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Chuanbin Mao.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, P., Wang, Y., Zhu, Y. et al. Nontoxic virus nanofibers improve the detection sensitivity for the anti-p53 antibody, a biomarker in cancer patients. Nano Res. 8, 3562–3570 (2015). https://doi.org/10.1007/s12274-015-0856-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0856-1

Keywords

Navigation