Skip to main content
Log in

A facile synthesis of hierarchical Sn3O4 nanostructures in an acidic aqueous solution and their strong visible-light-driven photocatalytic activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hierarchical tin(III) oxide, Sn3O4, nanospheres were synthesized via hydrothermal reaction under strongly acidic ambient conditions. The morphology of Sn3O4 varied with decreasing pH. The prickly Sn3O4 nanospheres changed into Sn3O4 nanospheres covered with single-crystalline nanoplates having a high BET surface area of ca. 55.05 m2·g–1 and a band gap of ca. 2.25 eV. Small amounts (0.05 g) of the hierarchical Sn3O4 nanostructures completely decomposed a 30% methyl orange (MO) solution in 100 mL deionized water within 15 min under one sun condition (UV + visible light). The Sn3O4 photocatalyst exhibited a fast decomposition rate of 1.73 × 10−1 min−1, which is a 90.86% enhancement relative to that of the commercially available P25 photocatalyst. The high photocatalytic activity of the hierarchical Sn3O4 nanostructures is attributed to its ability to absorb visible light and its high surface-to-volume ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, Z. R.; Gole, J. L.; Stout, J. D.; Wang, Z. L. Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 2002, 106, 1274–1279.

    Article  Google Scholar 

  2. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

    Article  Google Scholar 

  3. Xu, X. X.; Zhuang, J.; Wang, X. SnO2 quantum dots and quantum wires: Controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 2008, 130, 12527–12535.

    Article  Google Scholar 

  4. Cheng, Y.; Chen, K. S.; Meyer, N. L.; Yuan, J.; Hirst, L. S.; Chase, P. B.; Xiong, P. Functionalized SnO2 nanobelt fieldeffect transistor sensors for label-free detection of cardiac troponin. Biosens. Bioelectron. 2011, 26, 4538–4544.

    Article  Google Scholar 

  5. Ding, S. J.; Chen, J. S.; Qi, G. G.; Duan, X. N.; Wang, Z. Y.; Giannelis, E. P.; Archer, L. A.; Lou, X. W. Formation of SnO2 hollow nanospheres inside mesoporous silica. J. Am. Chem. Soc. 2011, 133, 21–23.

    Article  Google Scholar 

  6. Song, H.; Lee, K.-H.; Jeong, H.; Um, S. H.; Han, G.-S.; Jung, H. S.; Jung, G. Y. A simple self-assembly route to single crystalline SnO2 nanorod growth by oriented attachment for dye sensitized solar cells. Nanoscale 2013, 5, 1188–1194.

    Article  Google Scholar 

  7. Shi, L. A.; Lin, H. L. Facile fabrication and optical property of hollow SnO2 spheres and their application in water treatment. Langmuir 2010, 26, 18718–18722.

    Article  Google Scholar 

  8. Wang, H. J.; Sun, F. Q.; Zhang, Y.; Li, L. S.; Chen, H. Y.; Wu, Q. S.; Yu. J. C. Photochemical growth of nanoporous SnO2 at the air-water interface and its high photocatalytic activity. J. Mater. Chem. 2010, 20, 5641–5645.

    Article  Google Scholar 

  9. Nasr, C.; Kamat, P. V.; Hotchandani, S. Photoelectrochemical behavior of coupled SnO2/CdSe nanocrystalline semiconductor films. J. Electroanal. Chem. 1997, 420, 201–207.

    Article  Google Scholar 

  10. Kar, A.; Kundu, S.; Patra, A. Photocatalytic properties of semiconductor SnO2/CdS heterostructure nanocrystals. RSC Adv. 2012, 2, 10222–10230.

    Article  Google Scholar 

  11. Vlachopoulos, N.; Liska, P.; Augustynski, J.; Gratzel, M. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J. Am. Chem. Soc. 1988, 110, 1216–1220.

    Article  Google Scholar 

  12. Wrighton, M. S.; Ginley, D. S.; Wolczanski, P. T.; Ellis, A. B.; Morse, D. L.; Linz, A. Photoassisted electrolysis of water by irradiation of a titanium dioxide electrode. Proc. Natl. Acad. Sci. USA. 1975, 72, 1518–1522.

    Article  Google Scholar 

  13. He, Y. H.; Li, D. Z.; Chen, J.; Shao, Y.; Xian, J. J.; Zheng, X. Z.; Wang, P. Sn3O4: A novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. RSC Adv. 2014, 4, 1266–1269.

    Article  Google Scholar 

  14. Xia, W. W.; Wang, H. B.; Zeng, X. H.; Han, J.; Zhu, J.; Zhou, M.; Wu, S. D. High-efficiency photocatalytic activity of type IISnO/Sn3O4 heterostructures via interfacial charge transfer. CrystEngComm 2014, 16, 6841–6847.

    Article  Google Scholar 

  15. Berengue, O. M.; Simon, R. A.; Chiquito, A. J.; Dalmaschio, C. J.; Leite, E. R.; Guerreiro, H. A.; Guimarães, F. E. G. Semiconducting Sn3O4 nanobelts: Growth and electronic structure. J. Appl. Phys. 2010, 107, 033717.

    Article  Google Scholar 

  16. Lawson, F. Tin oxide-Sn3O4. Nature 1967, 215, 955–956.

    Article  Google Scholar 

  17. Wang, F. P.; Zhou, X. T.; Zhou, J. G.; Sham, T. K.; Ding, Z. F. Observation of single tin dioxide nanoribbons by confocal raman microspectroscopy. J. Phys. Chem. C 2007, 111, 18839–18843.

    Article  Google Scholar 

  18. Seko, A.; Togo, A.; Oba, F.; Tanaka, I. Structure and stability of a homologous series of tin oxides. Phys. Rev. Lett. 2008, 100, 045702.

    Article  Google Scholar 

  19. Mäki-Jaskari, M. A.; Rantala, T. T. Possible structures of nonstoichiometric tin oxide: The composition Sn2O3. Modell. Simul. Mater. Sci. Eng. 2004, 12, 33–41.

    Article  Google Scholar 

  20. White, T. A.; Moreno, M. S.; Midgley, P. A. Structure determination of the intermediate tin oxide Sn3O4 by precession electron diffraction. Z. Kristallogr. 2010, 225, 56–66.

    Google Scholar 

  21. Gauzzi, F.; Verdini, B.; Maddalena, A.; Principi, G. X-ray diffraction and mössbauer analyses of SnO disproportionation products. Inorg. Chim. Acta 1985, 104, 1–7.

    Article  Google Scholar 

  22. Moreno, M. S.; Mercader, R. C.; Bibiloni, A. G. Study of intermediate oxides in SnO thermal decomposition. J. Phys.: Condens. Mat. 1992, 4, 351–355.

    Google Scholar 

  23. Damaschio, C. J.; Berengue, O. M.; Stroppa, D. G.; Simon, R. A.; Ramirez, A. J.; Schreiner, W. H.; Chiquito, A. J.; Leite, E. R. Sn3O4 single crystal nanobelts grown by carbothermal reduction process. J. Cryst. Growth 2010, 312, 2881–2886.

    Article  Google Scholar 

  24. Cahen, S.; David, N.; Fiorani, J. M.; Maître, A.; Vilasi, M. Thermodynamic modelling of the O-Sn system. Thermochimica Acta 2003, 403, 275–285.

    Article  Google Scholar 

  25. Ohgi, H.; Maeda, T.; Hosono, E.; Fujihara, S.; Imai, H. Evolution of nanoscale SnO2 grains, flakes, and plates into versatile particles and films through crystal growth in aqueous solutions. Cryst. Growth Des. 2005, 5, 1079–1083.

    Article  Google Scholar 

  26. Uchiyama, H.; Ohgi, H.; Imai, H. Selective preparation of SnO2 and SnO crystals with controlled morphologies in an aqueous solution system. Cryst. Growth Des. 2006, 6, 2186–2190.

    Article  Google Scholar 

  27. Manikandan, M.; Tanbe, T.; Li, P.; Ueda, S.; Ramesh, G. V.; Kodiyath, R.; Wang, J. J.; Hara, T.; Dakshanamoorthy, A.; Ishihara, S. et al. Photocatalytic water splitting under visible light by mixed-valence Sn3O4. ACS Appl. Mater. Interfaces 2014, 6, 3790–3793.

    Google Scholar 

  28. Xu, W.; Li, M.; Chen, X. B.; Zhao, J. H.; Tan, R. Q.; Li, R.; Li, J.; Song, W. J. Synthesis of hierarchical Sn3O4 microflowers selfassembled by nanosheets. Mater. Lett. 2014, 120, 140–142.

    Article  Google Scholar 

  29. Li, M.; Tan, R. Q.; Li, R.; Song, W. J.; Xu, W. Effects of pH on the microstructures and optical properties of Sn3O4 crystals prepared by hydrothermal method. Ceram. Int. 2014, 40, 11381–11385.

    Article  Google Scholar 

  30. Davies, C. G.; Donaldson, J. D. The mössbauer effect in tin(II) compounds, Part III. The spectra of trihydroxostannates(II) and of basic tin(II) salts. J. Chem. Soc. A 1968, 946–948.

    Google Scholar 

  31. Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 2006, 18, 2807–2824.

    Article  Google Scholar 

  32. Wu, J. M.; Hayakawa, S.; Tsuru, K.; Osaka, A. Porous titania films prepared from interactions of titanium with hydrogen peroxide solution. Scr. Mater. 2002, 46, 101–106.

    Article  Google Scholar 

  33. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 1985, 57, 603–619.

    Article  Google Scholar 

  34. Ding, Y. H.; Zhang, P.; Long, Z. L.; Jiang, Y.; Xu, F.; Lei, J. G. Fabrication and photocatalytic property of TiO2 nanofibers. J. Sol-Gel Sci. Technol. 2008, 46, 176–179.

    Article  Google Scholar 

  35. Bocarsly, A. B.; Bolts, J. M.; Cummins, P. G.; Wrighton, M. S. Photoelectrolysis of water at high current density: Use of ultraviolet laser excitation. Appl. Phys. Lett. 1977, 31, 568–570.

    Article  Google Scholar 

  36. Sclafani, A.; Mozzanega, M.-N.; Pichat, P. Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol. J. Photochem. Photobiol. A: Chem. 1991, 59, 181–189.

    Article  Google Scholar 

  37. Doodeve, C. F.; Kitchener, J. A. The mechanism of photosensitisation by solids. Trans. Faraday Soc. 1938, 34, 902–908.

    Article  Google Scholar 

  38. Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341–357.

    Article  Google Scholar 

  39. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surface. Nature 1997, 388, 431–432.

    Article  Google Scholar 

  40. Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

    Article  Google Scholar 

  41. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  42. Hoigné, J.; Bader, H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res. 1976, 10, 377–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gun Young Jung.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Son, SY., Kim, S.K. et al. A facile synthesis of hierarchical Sn3O4 nanostructures in an acidic aqueous solution and their strong visible-light-driven photocatalytic activity. Nano Res. 8, 3553–3561 (2015). https://doi.org/10.1007/s12274-015-0855-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0855-2

Keywords

Navigation