Skip to main content
Log in

From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene nanosheets possess a promising potential as electrodes in Li-ion batteries (LIBs); consequently, the development of low-cost and high-productivity synthetic approaches is crucial. Herein, porous graphene-like nanosheets (PGSs) have been synthesized from expandable graphite (EG) by initially intercalating phosphoric acid, and then performing annealing to enlarge the interlayer distance of EG, thus facilitating the successive intercalation of zinc chloride. Subsequently, the following pyrolysis of zinc chloride in the EG interlayer promoted the formation of the porous PGS structure; meanwhile, the gas produced during the formation of the porous structure could exfoliate the EG to graphene-like nanosheets. The synthetic PGS material used as LIB anode exhibited superior Li+ storage performance, showing a remarkable discharge capacity of 830.4 mAh·g-1 at 100 mA·g-1, excellent rate capacity of 211.6 mAh·g-1 at 20,000 mA·g-1, and excellent cycle performance (near 100% capacity retention after 10,000 cycles). The excellent rate performance is attributed to the Li+ ion rapid transport in porous structures and the high electrical conductivity of graphene-like nanosheets. It is expected that PGS may be widely used as anode material for high-rate LIBs via this facile and low-cost route by employing EG as the raw material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Y.; Cao, G. Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251–2269.

    Article  Google Scholar 

  2. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

    Article  Google Scholar 

  3. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: Aperspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  Google Scholar 

  4. Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901–4906.

    Article  Google Scholar 

  5. Park, K. H.; Lee, D.; Kim, J.; Song, J.; Lee, Y. M.; Kim, H.-T.; Park, J. K. Defect-free, size-tunable graphene for high-performance lithium ion battery. Nano Lett. 2014, 14, 4306–4313.

    Article  Google Scholar 

  6. Bogart, T. D.; Oka, D.; Lu, X. T.; Gu, M.; Wang, C. M.; Korgel, B. A. Lithium ion battery performance of silicon nanowires with carbon skin. ACS Nano 2014, 8, 915–922.

    Article  Google Scholar 

  7. Zhang, G. Q.; Lou, X. W. General synthesis of multi-shelled mixed metal oxide hollow sphereswith superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 9041–9044.

    Article  Google Scholar 

  8. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  9. Wu, Y. M.; Wen, Z. H.; Feng, H. B.; Li, J. H. Hollow porous LiMn2O4microcubes as rechargeable lithium battery cathode with high electrochemical performance. Small 2012, 8, 858–862.

    Article  Google Scholar 

  10. Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 2010, 114, 21770–21774.

    Article  Google Scholar 

  11. Wu, Y. M.; Wen, Z. H.; Li, J. H. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 2011, 23, 1126–1129.

    Article  Google Scholar 

  12. Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors. Angew. Chem., Int. Ed. 2014, 53, 1404–1409.

    Article  Google Scholar 

  13. Shi, Q. H.; Liang, H. J.; Feng, D.; Wang, J. F.; Stucky, G. D. Porous carbon and carbon/metal oxide microfibers with wellcontrolled pore structure and interface. J. Am. Chem. Soc. 2008, 130, 5034–5035.

    Article  Google Scholar 

  14. Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613.

    Article  Google Scholar 

  15. Sun, H.; He, X. M.; Ren, J. G.; Li, J. J.; Jiang, C. Y.; Wan, C. R. Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochim. Acta 2007, 52, 4312–4316.

    Article  Google Scholar 

  16. Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of Co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169–10173.

    Article  Google Scholar 

  17. Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q. A.; Maier, J.; Mü llen, K. Nanographene-constructed hollow carbon spheresand their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838–842.

    Article  Google Scholar 

  18. Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.

    Google Scholar 

  19. Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and applicationin lithium-ion batteries. Small 2013, 9, 1877–1893.

    Article  Google Scholar 

  20. Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526–2542.

    Article  Google Scholar 

  21. Erickson, E. M.; Ghanty, C.; Aurbach, D. New horizons for conventional lithium ion battery technology. J. Phys. Chem. Lett. 2014, 5, 3313–3324.

    Article  Google Scholar 

  22. Hwang, H. J.; Koo, J.; Park, M.; Park, N.; Kwon, Y.; Lee, H. Multilayer graphynes for lithium ion battery anode. J. Phys. Chem. C2013, 117, 6919–6923.

    Google Scholar 

  23. Liu, Y.; Fan, F. F.; Wang, J. W.; Liu, Y.; Chen, H. L.; Jungjohann, K. L.; Xu, Y. H.; Zhu, Y. J.; Bigio, D.; Zhu, T. et al. In situtransmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett. 2014, 14, 3445–3452.

    Article  Google Scholar 

  24. Wu, D. Q.; Zhang, F.; Liangab, H. W.; Feng, X. L. Nanocomposites and macroscopic materials: Assembly of chemicallymodified graphenesheets. Chem. Soc. Rev. 2012, 41, 6160–6177.

    Article  Google Scholar 

  25. Wu, Z.-S.; Sun, Y.; Tan, Y.-Z.; Yang, S. B.; Feng, X. L.; Müllen, K. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 2012, 134, 19532–19535.

    Article  Google Scholar 

  26. Shi, Y. F.; Wan, Y.; Zhao, D. Y. Ordered mesoporous nonoxide materials. Chem. Soc. Rev. 2011, 40, 3854–3878.

    Article  Google Scholar 

  27. Hellstrom, S. L.; Vosgueritchian, M.; Stoltenberg, R. M.; Irfan, I.; Hammock, M.; Wang, Y. B.; Jia, C. C.; Guo, X. F.; Gao, Y. L.; Bao, Z. N. Strong and stable doping of carbon nanotubes and graphene byMoOx for transparent electrodes. Nano Lett. 2012, 12, 3574–3580.

    Article  Google Scholar 

  28. Pei, L. K.; Jin, Q.; Zhu, Z. Q.; Zhao, Q.; Liang, J.; Chen, J. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in threedimensional graphene. Nano Res. 2015, 8, 184–192.

    Article  Google Scholar 

  29. Zhou, D.-D.; Li, W.-Y.; Dong, X.-L.; Wang, Y.-G.; Wang, C.-X.; Xia, Y.-Y. A nitrogen-doped ordered mesoporous carbonnanofiber array for supercapacitors. J. Mater. Chem. A2013, 1, 8488–8496.

    Article  Google Scholar 

  30. Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979–2993.

    Article  Google Scholar 

  31. Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as highcapacity anode materials for lithium batteries. Angew. Chem., Int. Ed. 2012, 51, 9034–9037.

    Article  Google Scholar 

  32. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  33. Kaskhedikar, N. A.; Maier, J. Lithium storage in carbon nanostructures. Adv. Mater. 2009, 21, 2664–2680.

    Article  Google Scholar 

  34. Sun, Z. H.; Chang, H. X. Graphene and graphene-like twodimensional materials in photodetection: Mechanismsand methodology. ACS Nano 2014, 8, 4133–4156.

    Article  Google Scholar 

  35. Wu, Z. X.; Li, W.; Xia, Y. Y.; Webley, P.; Zhao, D. Y. Ordered mesoporous graphitized pyrolytic carbon materials: Synthesis, graphitization, and electrochemical properties. J. Mater. Chem. 2012, 22, 8835–8845.

    Article  Google Scholar 

  36. Park, J.-S.; Lee, M.-H.; Jeon, I.-Y.; Park, H.-S.; Baek, J.-B.; Song, H.-K. Edge-exfoliated graphites for facile kinetics of delithiation. ACS Nano 2012, 6, 10770–10775.

    Google Scholar 

  37. Fan, Z. J.; Liu, Y.; Yan, J.; Ning, G. Q.; Wang, Q.; Wei, T.; Zhi, L. J.; Wei, F. Template-directed synthesis of pillaredporous carbon nanosheet architectures: High-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 419–424.

    Article  Google Scholar 

  38. Huang, C.-H.; Zhang, Q.; Chou, T.-C.; Chen, C.-M.; Su, D. S.; Doong, R.-A. Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage. ChemSusChem 2012, 5, 563–571.

    Article  Google Scholar 

  39. Wang, L.; Sun, L.; Tian, C. G.; Tan, T. X.; Mu, G.; Zhang, H. X.; Fu, H. G. A novel soft template strategy to fabricate mesoporous carbon/graphene composites as high-performance supercapacitor electrodes. RSC Adv. 2012, 2, 8359–8367.

    Article  Google Scholar 

  40. Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithiumion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901–4906.

    Article  Google Scholar 

  41. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  Google Scholar 

  42. Chen, Z.-L.; Kam, F.-Y.; Goh, R. G.-S.; Song, J.; Lim, G.-K.; Chua, L.-L. Influence of graphite source on chemical oxidative reactivity. Chem. Mater. 2013, 25, 2944–2949.

    Article  Google Scholar 

  43. Zheng, R. T.; Gao, J. W.; Wang, J. J.; Feng, S.-P.; Ohtani, H.; Wang, J. B.; Chen, G. Thermal percolation in stable graphite suspensions. Nano Lett. 2012, 12, 188–192.

    Article  Google Scholar 

  44. Wang, L.; Mu, G.; Tian, C. G.; Sun, L.; Zhou, W.; Tan, T. X.; Fu, H. G. In situ intercalating expandable graphite for mesoporous carbon/graphite nanosheet composites as highperformance supercapacitor electrodes. Chem Sus Chem 2012, 5, 2442–2450.

    Article  Google Scholar 

  45. Wang, L.; Tian, C. G.; Wang, B. L.; Wang, R. H.; Zhou, W. Fu, H. G. Controllable synthesis of graphitic carbon nanostructures from ion-exchange resin-iron complex via solidstate pyrolysis process. Chem. Commun. 2008, 42, 5411–5413.

    Article  Google Scholar 

  46. Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhao, D. D.; Zhou, W.; Yin, J.; Wang, R. H.; Fu, H. G. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ionexchanged resins for enhanced oxygen reduction. Sci. Rep. 2014, 4, 5184.

    Google Scholar 

  47. Chakraborty, I.; Bodurtha, K. J.; Heeder, N. J.; Godfrin, M. P.; Tripathi, A.; Hurt, R. H.; Shukla, A.; Bose, A. Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl. Mater. Interfaces 2014, 6, 16472–16475.

    Article  Google Scholar 

  48. Ghosh, T.; Biswas, C.; Oh, J.; Arabale, G.; Hwang, T.; Luong, N. D.; Jin, M.; Lee, Y. H.; Nam J. D. Solution-processed graphite membrane from reassembled graphene oxide. Chem. Mater. 2012, 24, 594–599.

    Article  Google Scholar 

  49. Sun, B.; Huang, X. D.; Chen, S. Q.; Munroe, P.; Wang, G. X. Porous graphene nanoarchitectures: An efficient catalyst for low charge-overpotential, long life, and high capacity lithium–oxygen batteries. Nano Lett. 2014, 14, 3145–3152.

    Article  Google Scholar 

  50. Wang, X.; Weng, Q.; Liu, X. Z.; Wang, X. B.; Tang, D.-M.; Tian, W.; Zhang, C.; Yi, W.; Liu, D. Q.; Bando, Y. et al. Atomistic origins of high rate capability and capacity of Ndoped graphene for lithium storage. Nano Lett. 2014, 14, 1164–1171.

    Article  Google Scholar 

  51. Xu, C.; Zeng, Y.; Rui, X. H.; Xiao, N.; Zhu, J. X.; Zhang, W. Y.; Chen, J.; Liu, W. L.; Tan, H. T.; Hng, H. H. et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 2012, 6, 4713–4721.

    Article  Google Scholar 

  52. Fei, L.; Lin, Q. L.; Yuan, B.; Chen, G.; Xie, P.; Li, Y. L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl. Mater. Interfaces 2013, 5, 5330–5335.

    Article  Google Scholar 

  53. Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136–3142.

    Article  Google Scholar 

  54. Fu, L. J.; Tang, K.; Song, K. P.; van Aken, P. A.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibers as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384–1389.

    Article  Google Scholar 

  55. Wang, Z. H.; Qie, L.; Yuan, L. X.; Zhang, W. X.; Hu, X. L.; Huang, Y. H. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328–334.

    Article  Google Scholar 

  56. Chen, Y. M.; Li, X. Y.; Park, K.; Song, J.; Hong, J. H.; Zhou, L. M.; Mai, Y.-W.; Huang, H. T.; Goodenough, J. B. Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 16280–16283.

    Article  Google Scholar 

  57. Tian, W.-Q.; Wu, X.-Y.; Wang, K.-X.; Jiang, Y.-M.; Wang, J.-F.; Chen, J.-S. Hierarchical porous carbon spheres as an anode material for lithium ion batteries. RSC Adv. 2013, 3, 10823–10827.

    Article  Google Scholar 

  58. Xiang, H. F.; Li, Z. D.; Xie, K.; Jiang, J. Z.; Chen, J. J.; Lian, P. C.; Wu, J. S.; Yu, Y.; Wang, H. H. Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv. 2012, 2, 6792–6799.

    Article  Google Scholar 

  59. Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129.

    Article  Google Scholar 

  60. Fei, L.; Xu, Y.; Wu, X. F.; Chen, G.; Li, Y. L.; Li, B. S.; Deng, S. G.; Smirnov, S.; Fan, H. Y.; Luo, H. M. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries. Nanoscale 2014, 6, 3664–3669.

    Article  Google Scholar 

  61. Wang, L. L.; Zhu, Y. C.; Guo, C.; Zhu, X. B.; Liang J. W.; Qian, Y. T. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries. Chem Sus Chem 2014, 7, 87–91.

    Article  Google Scholar 

  62. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  Google Scholar 

  63. Yang, S. B.; Feng, X. L.; Wang, L.; Tang, K.; Maier, J.; Mü llen, K. Graphene-based nanosheets with a sandwich structure. Angew. Chem., Int. Ed. 2010, 49, 4795–4799.

    Article  Google Scholar 

  64. Zheng, H.; Park, D.-Y.; Kim, M.-S. Preparation and characterization of anode materialsusing expanded graphite/pitch composite for high powerLi-ion secondary batteries. Res. Chem. Intermed. 2014, 40, 2501–2507.

    Article  Google Scholar 

  65. Fukuda, K.; Kikuya, K.; Isono, K.; Yoshio, M. Foliated natural graphite as the anode material forrechargeable lithium-ion cells. J. Power Sources 1997, 69, 165–168.

    Article  Google Scholar 

  66. Bai, L.-Z.; Zhao, D.-L.; Zhang, T.-M.; Xie, W.-G.; Zhang, J.-M.; Shen, Z.-M. A comparative study of electrochemical performance of graphenesheets, expanded graphite and natural graphite as anode materials forlithium-ion batteries. Electrochimica Acta 2013, 107, 555–561.

    Article  Google Scholar 

  67. Lin, Y. X.; Huang, Z.-H.; Yu, X. L.; Shen, W. C.; Zheng, Y. P.; Kang, F. Y. Mildly expanded graphite for anode materials of lithium ion batterysynthesized with perchloric acid. Electrochimica Acta 2014, 116, 170–174.

    Article  Google Scholar 

  68. Qie, L.; Chen, W.-M.; Wang, Z.-H.; Shao, Q.-G.; Li, X.; Yuan, L.-X.; Hu, X.-L.; Zhang, W.-X.; Huang, Y.-H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

    Article  Google Scholar 

  69. Wang, B.; Li, X. L.; Qiu, T. F.; Luo, B.; Ning, J.; Li, J.; Zhang, X. F.; Liang, M. H.; Zhi, L. J. High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. Nano Lett. 2013, 13, 5578–5584.

    Article  Google Scholar 

  70. Liu, H.; Su, D. W.; Zhou, R. F.; Sun, B.; Wang, G. X.; Qiao, S. Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970–975.

    Article  Google Scholar 

  71. Xiao, Y.; Sun, P. P.; Cao, M. H. Core–shell bimetallic carbide nanoparticles confined in a three-dimensional N-doped carbon conductive network for efficient lithium storage. ACS Nano 2014, 8, 7846–7857.

    Article  Google Scholar 

  72. Wang, L.; Mu, G.; Tian, C. G.; Sun, L.; Zhou, W.; Yu, P.; Yin, J.; Fu, H. G. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. ChemSusChem 2013, 6, 880–889.

    Article  Google Scholar 

  73. Tian, L.-L.; Wei, X.-Y.; Zhuang, Q.-C.; Jiang, C.-H.; Wu, C.; Ma, G.-Y.; Zhao, X.; Zong, Z.-M.; Sun, S.-G. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage. Nanoscale 2014, 6, 6075–6083.

    Article  Google Scholar 

  74. Zhu, Z. Q.; Wang, S. W.; Du, J.; Jin, Q.; Zhang, T. R.; Cheng, F. Y.; Chen, J. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon As high-performance anode for lithium-ion batteries. Nano Lett. 2014, 14, 153–157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggang Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Wang, L., Yu, P. et al. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 8, 2998–3010 (2015). https://doi.org/10.1007/s12274-015-0805-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0805-z

Keywords

Navigation