Skip to main content
Log in

Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Three-dimensional imaging cannot be achieved easily using previously developed localization super-resolution techniques. Here, we present a three-dimensional multimodal sub-diffraction imaging technique with spinning-disk (SD) confocal microscopy called 3D-MUSIC, which not only has all the advantages of SD confocal microscopy, such as fast imaging speed, high signal-to-noise ratio, and optical-sectioning capability, but also extends its spatial resolution limit along all three dimensions. Both axial and lateral resolution can be improved simultaneously by virtue of the blinking/fluctuating nature of modified fluorescent probes, exemplified with the quantum dots. Further, super-resolution images with dual modality can be obtained through super-resolution optical fluctuation imaging (SOFI) and bleaching/blinking-assisted localization microscopy (BaLM). Therefore, fast super-resolution imaging can be achieved with SD-SOFI by capturing only 100 frames while SD-BaLM yields high-resolution imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giloh, H.; Sedat, J. W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 1982, 217, 1252–1255.

    Article  Google Scholar 

  2. Baschong, W.; Suetterlin, R.; Laeng, R. H. Control of autofluorescence of archival formaldehyde-fixed, paraffinembedded tissue in confocal laser scanning microscopy (CLSM). J. Histochem. Cytochem. 2001, 49, 1565–1571.

    Article  Google Scholar 

  3. Carlsson, K.; Danielsson, P. E.; Liljeborg, A.; Majlöf, L.; Lenz, R.; Åslund, N. Three-dimensional microscopy using a confocal laser scanning microscope. Opt. Lett. 1985, 10, 53–55.

    Article  Google Scholar 

  4. Wang, Y.; Kuang, C.; Cai, H.; Li, S.; Liu, W.; Hao, X.; Ge, J.; Liu, X. Sub-diffraction imaging with confocal fluorescence microscopy by stochastic photobleaching. Opt.Commun. 2014, 312, 62–67.

    Article  Google Scholar 

  5. Tanaami, T.; Otsuki, S.; Tomosada, N.; Kosugi, Y.; Shimizu, M.; Ishida, H. High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl. Opt. 2002, 41, 4704–4708.

    Article  Google Scholar 

  6. Conchello, J. A.; Lichtman, J. W. Optical sectioning microscopy. Nat. Methods 2005, 2, 920–931.

    Article  Google Scholar 

  7. Gligorijevic, B.; Purdy, K.; Elliott, D. A.; Cooper, R. A.; Roepe, P. D. Stage independent chloroquine resistance and chloroquine toxicity revealed via spinning disk confocal microscopy. Mol. Biochem. Parasitol. 2008, 159, 7–23.

    Article  Google Scholar 

  8. Gligorijevic, B.; Bennett, T.; McAllister, R.; Urbach, J. S.; Roepe, P. D. Spinning disk confocal microscopy of live, intraerythrocytic malarial parasites. 2. Altered vacuolar volume regulation in drug resistant malaria. Biochemistry 2006, 45, 12411–12423.

    Article  Google Scholar 

  9. Egeblad, M.; Ewald, A. J.; Askautrud, H. A.; Truitt, M. L.; Welm, B. E.; Bainbridge, E.; Peeters, G.; Krummel, M. F.; Werb, Z. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis. Models & Mech. 2008, 1, 155–167.

    Article  Google Scholar 

  10. Sisan, D. R.; Arevalo, R.; Graves, C.; McAllister, R.; Urbach, J. S. Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys. J. 2006, 91, 4241–4252.

    Article  Google Scholar 

  11. Cox, G.; Sheppard, C. J. Practical limits of resolution in confocal and non-linear microscopy. Microsc. Res. Techniq. 2004, 63, 18–22.

    Article  Google Scholar 

  12. Martínez-Corral, M.; Andres, P.; Ojeda-Castaneda, J.; Saavedra, G. Tunable axial superresolution by annular binary filters. Application to confocal microscopy. Opt. Commun. 1995, 119, 491–498.

    Article  Google Scholar 

  13. Nagorni, M.; Hell, S. W. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100-to 150-nm resolution. J. Struct. Biol. 1998, 123, 236–247.

    Article  Google Scholar 

  14. Huang, B.; Bates, M.; Zhuang, X. W. Super resolution fluorescence microscopy. Annu. Rev. Biochem. 2009, 78, 993.

    Article  Google Scholar 

  15. Schermelleh, L.; Heintzmann, R.; Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 2010, 190, 165–175.

    Article  Google Scholar 

  16. Hell, S. W. Far-field optical nanoscopy. Science 2007, 316, 1153–1158.

    Article  Google Scholar 

  17. Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 2003, 21, 1347–1355.

    Article  Google Scholar 

  18. Baddeley, D.; Cannell, M. B.; Soeller, C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil. Nano Res. 2011, 4, 589–598.

    Article  Google Scholar 

  19. Hell, S. W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782.

    Article  Google Scholar 

  20. Klar, T. A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA. 2000, 97, 8206–8210.

    Article  Google Scholar 

  21. Gustafsson, M. G. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA. 2005, 102, 13081–13086.

    Article  Google Scholar 

  22. Rego, E. H.; Shao, L.; Macklin, J. J.; Winoto, L.; Johansson, G. A.; Kamps-Hughes, N.; Davidson, M. W.; Gustafsson, M. G. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. USA. 2012, 109, E135–143.

    Article  Google Scholar 

  23. Shroff, H.; Galbraith, C. G.; Galbraith, J. A.; Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods. 2008, 5, 417–423.

    Article  Google Scholar 

  24. Manley, S.; Gillette, J. M.; Patterson, G. H.; Shroff, H.; Hess, H. F.; Betzig, E.; Lippincott-Schwartz, J. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods. 2008, 5, 155–157.

    Article  Google Scholar 

  25. Rust, M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796.

    Article  Google Scholar 

  26. Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Threedimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008, 319, 810–813.

    Article  Google Scholar 

  27. Burnette, D. T.; Sengupta, P.; Dai, Y.; Lippincott-Schwartz, J.; Kachar, B. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc. Natl. Acad. Sci. USA 2011, 108, 21081–21086.

    Article  Google Scholar 

  28. Dertinger, T.; Colyer, R.; Iyer, G.; Weiss, S.; Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA 2009, 106, 22287–22292.

    Article  Google Scholar 

  29. Dertinger, T.; Colyer, R.; Vogel, R.; Enderlein, J.; Weiss, S. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Opt. Express 2010, 18, 18875–18885.

    Article  Google Scholar 

  30. Pavani, S. R. P.; Thompson, M. A.; Biteen, J. S.; Lord, S. J.; Liu, N.; Twieg, R. J.; Piestun, R.; Moerner, W. Threedimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 2009, 106, 2995–2999.

    Article  Google Scholar 

  31. Yuen, H. P. Two-photon coherent states of the radiation field. Phys.Rev. A 1976, 13, 2226.

    Article  Google Scholar 

  32. Geissbuehler, S.; Bocchio, N. L.; Dellagiacoma, C.; Berclaz, C.; Leutenegger, M.; Lasser, T. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Opt. Nanosc. 2012, 1, 1–7.

    Article  Google Scholar 

  33. Leutwyler, W. K.; Bürgi, S. L.; Burgl, H. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

    Article  Google Scholar 

  34. Xie, R. G.; Chen, K.; Chen, X. Y.; Peng, X. G. InAs/InP/ ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res. 2008, 1, 457–464.

    Article  Google Scholar 

  35. Dertinger, T.; Heilemann, M.; Vogel, R.; Sauer, M.; Weiss, S. Superresolution optical fluctuation imaging with organic dyes. Angew. Chem. 2010, 122, 9631-9633.

    Article  Google Scholar 

  36. Chang, H.; Zhang, M. S.; Ji, W.; Chen, J. J.; Zhang, Y. D.; Liu, B.; Lu, J. Z.; Zhang, J. L.; Xu, P. Y.; Xu, T. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc. Natl. Acad. Sci. USA 2012, 109, 4455–4460.

    Article  Google Scholar 

  37. Habuchi, S.; Ando, R.; Dedecker, P.; Verheijen, W.; Mizuno, H.; Miyawaki, A.; Hofkens, J. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 2005, 102, 9511–9516.

    Article  Google Scholar 

  38. Zhang, X.; Chen, X.; Zeng, Z.; Zhang, M.; Sun, Y.; Xi, P.; Peng, J.; Xu, P. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI). ACS Nano 2015, 9, 2659–2667.

    Article  Google Scholar 

  39. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Article  Google Scholar 

  40. Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 2013, 6, 143-162.

    Article  Google Scholar 

  41. Xu, J.; Chang, J.; Yan, Q.; Dertinger, T.; Bruchez, M. P.; Weiss, S. Labeling cytosolic targets in live cells with blinking probes. J. Phys. Chem. Lett. 2013, 4, 2138–2146.

    Article  Google Scholar 

  42. Guizar-Sicairos, M.; Thurman, S. T.; Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158.

    Article  Google Scholar 

  43. Geissbuehler, S.; Dellagiacoma, C.; Lasser, T. Comparison between SOFI and STORM. Biomed. Opt. Express 2011, 2, 408–420.

    Article  Google Scholar 

  44. Henriques, R.; Lelek, M.; Fornasiero, E. F.; Valtorta, F.; Zimmer, C.; Mhlanga, M. M. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat. Methods 2010, 7, 339–340.

    Article  Google Scholar 

  45. Maglione, M.; Sigrist, S. J. Seeing the forest tree by tree: Super-resolution light microscopy meets the neurosciences. Nat. Neurosci. 2013, 16, 790–797.

    Article  Google Scholar 

  46. Dertinger, T.; Xu, J.; Naini, O. F.; Vogel, R.; Weiss, S. SOFI-based 3D superresolution sectioning with a widefield microscope. Opt. Nanosc. 2012, 1, 1–5.

    Google Scholar 

  47. Handbook of biological confocal microscopy; Pawley, J. B., Ed.; Springer: New York, 2010.

  48. Ding, Y. C.; Xi, P.; Ren, Q. S. Hacking the optical diffraction limit: Review on recent developments of fluorescence nanoscopy. Chin. Sci. Bull. 2011, 56, 1857-1876.

    Article  Google Scholar 

  49. Dedecker, P.; Mo, G. C.; Dertinger, T.; Zhang, J. Widely accessible method for superresolution fluorescence imaging of living systems. Proc. Natl. Acad. Sci. USA 2012, 109, 10909–10914.

    Article  Google Scholar 

  50. Watanabe, T. M.; Fukui, S.; Jin, T.; Fujii, F.; Yanagida, T. Real-time nanoscopy by using blinking enhanced quantum dots. Biophys. J. 2010, 99, L50–52.

    Article  Google Scholar 

  51. Zeng, Z. P.; Chen, X. Z.; Wang, H. N.; Huang, N.; Shan, C. Y.; Zhang, H.; Teng, J. L.; Xi, P. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging. Sci. Rep. 2015, 5, 8359.

    Article  Google Scholar 

  52. Zhu, L.; Zhang, W.; Elnatan, D.; Huang, B. Faster STORM using compressed sensing. Nat. Methods 2012, 9, 721–723.

    Article  Google Scholar 

  53. Das, S. K.; Liu, Y.; Yeom, S.; Kim, D. Y.; Richards, C. I. Single-particle fluorescence intensity fluctuations of carbon nanodots. Nano Lett. 2014, 14, 620–625.

    Article  Google Scholar 

  54. Liu, Q.; Guo, B. D.; Rao, Z. Y.; Zhang, B. H.; Gong, J. R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013, 13, 2436–2441.

    Article  Google Scholar 

  55. Bradac, C.; Gaebel, T.; Naidoo, N.; Sellars, M.; Twamley, J.; Brown, L.; Barnard, A.; Plakhotnik, T.; Zvyagin, A.; Rabeau, J. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat.Nanotechnol. 2010, 5, 345–349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xi.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zeng, Z., Wang, H. et al. Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes. Nano Res. 8, 2251–2260 (2015). https://doi.org/10.1007/s12274-015-0736-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0736-8

Keywords

Navigation