Skip to main content
Log in

Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Among the important optoelectronic devices, ultraviolet (UV) photodetectors show wide applications in fire monitoring, biological analysis, environmental sensors, space exploration, and UV irradiation detections. Research interest has focused on the utilization of one-dimensional (1D) metal oxide nanostructures to build advanced UV photodetectors through various processes. With large surface-to-volume ratio and well-controlled morphology and composition, 1D metal oxide nanostructures are regarded as promising candidates as components for building photodetectors with excellent sensitivity, superior quantum efficiency, and fast response speed. This article reviews the latest achievements with 1D metal oxide nanostructures reported over the past five years and their applications in UV light detection. It begins with an introduction of 1D metal oxide nanostructures, and the significance, key parameters and types of photodetectors. Then we present several kinds of widely-studied 1D nanostructures and their photodetection performance, focusing on binary oxides with wide-bandgap (such as ZnO, SnO2, Ga2O3, Nb2O5, and WO3) and ternary oxides (such as Zn2SnO4, Zn2GeO4, and In2Ge2O7). Finally, the review concludes with our perspectives and outlook on future research directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.

    Article  Google Scholar 

  2. Wang, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. R 2009, 64, 33–71.

    Article  Google Scholar 

  3. Lieber, C. M.; Wang, Z. L. Functional nanowires. MRS Bull. 2007, 32, 99–108.

    Article  Google Scholar 

  4. Liang. B; Huang, H. T.; Liu, Z.; Chen, G.; Yu, G.; Luo, T.; Liao, L.; Chen, D.; Shen, G. Z. Ladder-like metal oxide nanowires: Synthesis, electrical transport, and enhanced light absorption properties. Nano Res. 2014, 7, 272–283.

    Article  Google Scholar 

  5. Yu, R. M.; Pan, C. F.; Hu, Y. F.; Li, L.; Liu, H. F.; Liu, W.; Chua, S.; Chi, D. Z.; Wang, Z. L. Enhanced performance of GaN nanobelt-based photodetectors by means of piezotronic effects. Nano Res. 2013, 6, 758–766.

    Article  Google Scholar 

  6. Jain, V.; Nowzari, A.; Wallentin, J.; Borgström, M. T.; Messing, M. E.; Asoli, D.; Graczyk, M.; Witzigmann, B.; Capasso, F.; Samuelson, L.; et al. Study of photocurrent generation in InP nanowire-based p+-i-n+ photodetectors. Nano Res. 2014, 7, 544–552.

    Article  Google Scholar 

  7. Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X. M.; Chen, D.; Shen, G. Z. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783.

    Article  Google Scholar 

  8. Devan, R. S.; Patil, R. A.; Lin, J.-H.; Ma, Y.-R. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

    Article  Google Scholar 

  9. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan. H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

    Article  Google Scholar 

  10. Lu, J. G.; Chang, P. C.; Fan, Z. Y. Quasi-one-dimensional metal oxide materials-Synthesis, properties and applications. Mater. Sci. Eng. R 2006, 52, 49–91.

    Article  Google Scholar 

  11. Razeghi, M.; Rogalski, A. Semiconductor ultraviolet detectors. J. Appl. Phys. 1996, 79, 7433.

    Article  Google Scholar 

  12. Li, Y. B.; Valle, F. D.; Simonnet, M.; Yamada, I.; Delaunay, J.-J. High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology 2009, 20, 045501.

    Article  Google Scholar 

  13. Chen, M.; Hu, L. F.; Xu, J. X.; Liao, M. Y.; Wu, L. M.; Fang, X. S. ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. Small 2011, 7, 2449–2453.

    Google Scholar 

  14. Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391–400.

    Article  Google Scholar 

  15. Fang, X. S.; Bando, Y.; Liao, M. Y.; Zhai, T. Y.; Gautam, U. K.; Li, L.; Koide, Y.; Golberg, D. An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Funct. Mater. 2010, 20, 500–508.

    Article  Google Scholar 

  16. Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.

    Article  Google Scholar 

  17. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  Google Scholar 

  18. Fang, X. S.; Bando, Y.; Liao, M. Y.; Gautam, U. K.; Zhi, C. Y.; Dierre, B.; Liu, B. D.; Zhai, T. Y. Sekiguchi, T.; Koide, Y.; et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 2009, 21, 2034–2039.

    Article  Google Scholar 

  19. Hu, L. F.; Yan, J.; Liao, M. Y.; Xiang, H. J.; Gong, X. G.; Zhang, L. D.; Fang, X. S. An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv. Mater. 2012, 24, 2305–2309.

    Article  Google Scholar 

  20. Cho, H. D.; Zakirov, A. S.; Yuldashev, S. U.; Ahn, C. W.; Yeo, Y. K.; Kang, T. W. Photovoltaic device on a single ZnO nanowire p-n homojunction. Nanotechnology 2012, 23, 115401.

    Article  Google Scholar 

  21. Liu, K. W.; Sakurai, M.; Liao, M. Y.; Aono, M. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles. J. Phys. Chem. C 2010, 114, 19835–19839.

    Article  Google Scholar 

  22. Zhang, F.; Ding, Y.; Zhang, Y.; Zhang, X. L.; Wang, Z. L. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. ACS Nano 2012, 6, 9229–9236.

    Article  Google Scholar 

  23. Bai, S.; Wu, W. W.; Qin, Y.; Cui, N. Y.; Bayerl, D. J.; Wang, X. D. High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Adv. Funct. Mater. 2011, 21, 4464–4469.

    Article  Google Scholar 

  24. Manekkathodi, A.; Lu, M.-Y.; Wang, C. W.; Chen, L.-J. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater. 2010, 22, 4059–4063.

    Article  Google Scholar 

  25. Zhang, F.; Niu, S. M.; Guo, W. X.; Zhu, G.; Liu, Y.; Zhang, X. L.; Wang, Z. L. Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire. ACS Nano. 2013, 7, 4537–4544.

    Article  Google Scholar 

  26. Yang, Q.; Guo, X.; Wang, W. H.; Zhang, Y.; Xu, S.; Lien, D. H.; Wang, Z. L. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano 2010, 4, 6285–6291.

    Article  Google Scholar 

  27. Zhou, J.; Gu, Y. D.; Hu, Y. F.; Mai, W. J.; Yeh, P. H.; Bao, G.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 2009, 94, 191103.

    Article  Google Scholar 

  28. Tian, W.; Zhang, C.; Zhai, T. Y.; Li, S. L.; Wang, X.; Liu, J. W.; Jie, X.; Liu, D. Q.; Liao, M. Y.; Koide, Y.; et al. Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. Adv. Mater. 2014, 26, 3088–3093.

    Article  Google Scholar 

  29. Tian, W.; Zhai, T. Y.; Zhang, C.; Li, S. L.; Wang, X.; Liu, F.; Liu, D. Q.; Cai, X. K.; Tsukagoshi, K.; Golberg, D.; et al. Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers. Adv. Mater. 2013, 25, 4625–4630.

    Article  Google Scholar 

  30. Sun, K.; Jing, Y.; Park, N.; Li, C.; Bando, Y.; Wang, D. L. Solution synthesis of large-scale, high-sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors. J. Am. Chem. Soc. 2010, 132, 15465–15467.

    Article  Google Scholar 

  31. Yu, H. B.; Azhar, E. A.; Belagodu, T.; Lim, S.; Dey, S. ZnO nanowire based visible-transparent ultraviolet detectors on polymer substrates. J. Appl. Phys. 2012, 111, 102806.

    Article  Google Scholar 

  32. Jin, Z. W.; Wang, J. Z. Flexible high-performance ultraviolet photoconductor with zinc oxide nanorods and 8-hydroxyquinoline. J. Mater. Chem. C 2014, 2, 1966–1970.

    Article  Google Scholar 

  33. Yang, Z.; Wang, M. Q.; Song, X. H.; Yan, G. D.; Ding, Y. C.; Bai, J. B. High-performance ZnO/Ag nanowire/ZnO composite film UV photodetectors with large area and low operating voltage. J. Mater. Chem. C 2014, 2, 4312–4319.

    Article  Google Scholar 

  34. Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2013, 5, 4007.

    Google Scholar 

  35. Panigrahi, S.; Basak, D. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection. Nanoscale 2011, 3, 2336–2341.

    Article  Google Scholar 

  36. Hu, L. F.; Yan, J.; Liao, M. Y.; Wu, L. M.; Fang, X. S. Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. Small 2011, 7, 1012–1017.

    Article  Google Scholar 

  37. Lu, M. L.; Weng, T. M.; Chen, J. Y.; Chen, Y. F. Ultrahigh-gain single SnO2 nanowire photodetectors made with ferromagnetic nickel electrodes. NPG Asia Mater. 2012, 4, e26.

    Article  Google Scholar 

  38. Lu, M. L.; Lin, T. Y.; Weng, T. M.; Chen, Y. F. Large enhancement of photocurrent gain based on the composite of a single n-type SnO2 nanowire and p-type NiO nanoparticles. Opt. Express 2011, 19, 16266–16272.

    Article  Google Scholar 

  39. Lin, C. H.; Chen, T. T; Chen, Y. F. Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration. Opt. Express 2008, 16, 16916–16922.

    Article  Google Scholar 

  40. Kim, D.; Shin, G.; Yoon, J.; Jang, D.; Lee, S.-J.; Zi, G.; Ha, J. S. High performance stretchable UV sensor arrays of SnO2 nanowires. Nanotechnology 2013, 24, 315502.

    Article  Google Scholar 

  41. Huang, S.; Wu, H.; Matsubara, K.; Cheng, J.; Pan, W. Facile assembly of n-SnO2 nanobelts-p-NiO heterojunctions with enhanced ultraviolet photoresponse. Chem. Commun. 2014, 50, 2847–2850.

    Article  Google Scholar 

  42. Hsu, C. L.; Lu, Y. C. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires. Nanoscale 2012, 4, 5710–5717.

    Article  Google Scholar 

  43. Li, X. D.; Gao, C. T.; Duan, H. G.; Lu, B. A.; Wang, Y. Q.; Chen, L. L.; Zhang, Z. X.; Pan, X. J.; Xie, E. Q. High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure. Small 2013, 9, 2005–2011.

    Article  Google Scholar 

  44. Li, L.; Auer, E.; Liao, M. Y.; Fang, X. S.; Zhai, T. Y.; Gautam, U. K.; Lugstein, A.; Koide, Y.; Bando, Y.; Golberg, D. Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale 2011, 3, 1120–1126.

    Article  Google Scholar 

  45. Li, Y. B.; Tokizono, T.; Liao, M. Y.; Zhong, M.; Koide, Y.; Yamada, I.; Delaunay, J.-J. Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection. Adv. Funct. Mater. 2010, 20, 3972–3978.

    Article  Google Scholar 

  46. Zou, R. J.; Zhang, Z. Y.; Liu, Q.; Hu, J. Q.; Sang, L. W.; Liao, M. Y.; Zhang, W. J. High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (100) facet-oriented β-Ga2O3 nanobelts. Small 2014, 10, 1848–1856.

    Article  Google Scholar 

  47. Tian, W.; Zhi, C. Y.; Zhai, T. Y.; Chen, S. M.; Wang, X.; Liao, M. Y.; Golberg, D.; Bando, Y. In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse. J. Mater. Chem. 2012, 22, 17984–17991.

    Article  Google Scholar 

  48. Zou, R. J.; Zhang, Z. Y.; Hu, J. Q.; Sang, L. W.; Koide, Y.; Liao, M. Y. High-detectivity nanowire photodetectors governed by bulk photocurrent dynamics with thermally stable carbide contacts. Nanotechnology 2013, 24, 495701.

    Article  Google Scholar 

  49. Feng, P.; Zhang, J. Y.; Li, Q. H.; Wang, T. H. Individual β-Ga2O3 nanowires as solar-blind photodetectors. Appl. Phys. Lett. 2006, 88, 153107.

    Article  Google Scholar 

  50. Fang, X. S.; Hu, L. F.; Huo, K. F.; Gao, B.; Zhao, L. J.; Liao, M. Y.; Chu, P. K.; Bando, Y.; Golberg, D. New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 2011, 21, 3907–3915.

    Article  Google Scholar 

  51. Tamang, R.; Varghese, B.; Mhaisalkar, S. G.; Tok, E. S.; Sow, C. H. Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation. Nanotechnology 2011, 22, 115202.

    Article  Google Scholar 

  52. Li, L.; Zhang, Y.; Fang, X. S.; Zhai, T. Y.; Liao, M. Y.; Sun, X. L.; Koide, Y.; Bando, Y.; Golberg, D. WO3 nanowires on carbon papers: Electronic transport, improved ultraviolet-light photodetectors and excellent field emitters. J. Mater. Chem. 2011, 21, 6525–6530.

    Article  Google Scholar 

  53. Huang, K.; Zhang, Q.; Yang, F.; He, D. Y. Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res. 2010, 3, 281–287.

    Article  Google Scholar 

  54. Chen, R. S.; Chen, C. A.; Tsai, H. Y.; Wang, W. C.; Huang, Y. S. Photoconduction properties in single-crystalline titanium dioxide nanorods with ultrahigh normalized gain. J. Phys. Chem. C 2012, 116, 4267–4272.

    Article  Google Scholar 

  55. Xie, Y. R.; Wei, L.; Wei, G. D.; Li, Q. H.; Wang, D.; Chen, Y. X.; Yan, S. S.; Liu, G. L.; Mei, L. M.; Jiao, J. A self-powered UV photodetector based on TiO2 nanorod arrays. Nano. Res. Lett. 2013, 8, 188.

    Article  Google Scholar 

  56. Zhang, Y. J.; Wang, J. J.; Zhu, H. F.; Li, H.; Jiang, L.; Shu, C. Y.; Hu, W. P.; Wang, C. R. High performance ultraviolet photodetectors based on an individual Zn2SnO4 single crystalline nanowire. J. Mater. Chem. 2010, 20, 9858–9860.

    Article  Google Scholar 

  57. Li, C.; Bando, Y.; Liao, M. Y.; Koide, Y.; Golberg, D. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Appl. Phys. Lett. 2010, 97, 161102.

    Article  Google Scholar 

  58. Li, L.; Lee, P. S.; Yan, C. Y.; Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Koide, Y.; Bando, Y.; Golberg, D. Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts. Adv. Mater. 2010, 22, 5145–5149.

    Article  Google Scholar 

  59. Tian, W.; Zhi, C. Y.; Zhai, T. Y.; Wang, X.; Liao, M. Y.; Li, S. L.; Chen, S. M.; Golberg, D.; Bando, Y. Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors. Nanoscale 2012, 4, 6318–6324.

    Article  Google Scholar 

  60. Liu, Z.; Huang, H. T.; Liang, B.; Wang, X. F.; Wang, Z. R.; Chen, D.; Shen, G. Z. Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates. Opt. Express 2012, 20, 2982–2991.

    Article  Google Scholar 

  61. Yan, C. Y.; Singh, N.; Lee, P. S. Morphology control of indium germanate nanowires, nanoribbons, and hierarchical nanostructures. Cryst. Growth Des. 2009, 9, 3697–3701.

    Article  Google Scholar 

  62. Yan, C. Y.; Singh, N.; Lee, P. S. Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time. Appl. Phys. Lett. 2010, 96, 053108.

    Article  Google Scholar 

  63. Liu, Z.; Liang, B.; Chen, G.; Yu, G.; Xie, Z.; Gao, L. N.; Chen, D.; Shen, G. Z. Contact printing of horizontally aligned Zn2GeO4 and In2Ge2O7 nanowire arrays for multi-channel field-effect transistors and their photoresponse performances. J. Mater. Chem. C 2013, 1, 131–137.

    Article  Google Scholar 

  64. Liu, H.; Zhang, Z. M.; Hu, L. F.; Gao, N.; Sang, L. W.; Liao, M. Y.; Ma, R. Z.; Xu, F. F.; Fang, X. S. New UV-A photodetector based on individual potassium niobate nanowires with high performance. Adv. Opt. Mater. 2014, 2, 771–778.

    Article  Google Scholar 

  65. Wang, Z. L. Splendid one-dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology. ACS Nano 2008, 2, 1987–1992.

    Article  Google Scholar 

  66. Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Xu, X. J.; Zeng, H. B.; Bando Y.; Golberg, D. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 2009, 9, 6504–6529.

    Article  Google Scholar 

  67. Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274–5309.

    Article  Google Scholar 

  68. Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012, 24, 4632–4646.

    Article  Google Scholar 

  69. Liu, Y.; Yang, Q.; Zhang, Y.; Yang, Z. Y.; Wang, Z. L. Nanowire piezo-phototronic photodetector: Theory and experimental design. Adv. Mater. 2012, 24, 1410–1417.

    Article  Google Scholar 

  70. Wang, Z. R.; Wang, H.; Liu, B.; Qiu, W. Z.; Zhang, J.; Ran, S. H.; Huang, H. T.; Xu, J.; Han, H. W.; Chen, D.; Shen, G. Z. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano. 2011, 5, 8412–8419.

    Article  Google Scholar 

  71. Wang, X. F.; Song, W. F.; Liu, B.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. High-performance organic-inorganic hybrid photodetectors based on P3HT:CdSe nanowires heterojunctions on rigid and flexible substrates. Adv. Funct. Mater. 2013, 23, 1202–1209.

    Article  Google Scholar 

  72. Amos, F. F.; Morin, S. A.; Streifer, J. A.; Hamers, R. J.; Jin, S. Photodetector arrays directly assembled onto polymer substrates from aqueous solution. J. Am. Chem. Soc. 2007, 129, 14296–14302.

    Article  Google Scholar 

  73. Aksoy, B.; Coskun, S.; Kucukyildiz, S.; Unalan, H. E. Transparent, highly flexible, all nanowire network germanium photodetectors. Nanotechnology 2012, 23, 325202.

    Article  Google Scholar 

  74. Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B.; et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654.

    Google Scholar 

  75. Sysoev, V. V.; Schneider, T.; Goschnick, J.; Kiselev, I.; Habicht, W.; Hahn, H.; Strelcov, E.; Kolmakov, A. Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films. Sens. Actuators, B 2009, 139, 699–703.

    Article  Google Scholar 

  76. Han, Y. T.; Wu, X.; Ma, Y. L.; Gong, L. H.; Qu, F. Y.; Fan, H. J. Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm 2011, 13, 3506–3510.

    Article  Google Scholar 

  77. Wan, Q.; Dattoli, E. N.; Lu W. Transparent metallic Sb-doped SnO2 nanowires. Appl. Phys. Lett. 2007, 90, 222107.

    Article  Google Scholar 

  78. Wu, Y. L.; Chang, S. J.; Liu, C. H.; Weng, W. Y.; Tsai, T. Y.; Hsu, C. L. UV enhanced field emission for β-Ga2O3 nanowires. IEEE Electron Dev. Lett. 2013, 34, 701–703.

    Article  Google Scholar 

  79. Mazeina, L.; Perkins, F. K.; Bermudez, V. M.; Arnold, S. P.; Prokes, S. M. Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors. Langmuir 2010, 26, 13722–13726.

    Article  Google Scholar 

  80. Luo H. L.; Song, W. J.; Hoertz, P. G.; Hanson, K.; Ghosh, R.; Rangan, S.; Brennaman, M. K.; Concepcion, J. J.; Binstead, R. A.; Bartynski, R. A.; et al. A sensitized Nb2O5 photoanode for hydrogen production in a dye-sensitized photoelectronsynthesis cell. Chem. Mater. 2013, 25, 122–131.

    Article  Google Scholar 

  81. Ou, J. Z.; Rani, R. A.; Ham, M. H.; Field, M. R.; Zhang, Y.; Zheng, H. D.; Reece, P.; Zhuiykov, S.; Sriram, S.; Bhaskaran, M.; et al. Elevated temperature anodized Nb2O5: A photoanode material with exceptionally large photoconversion efficiencies. ACS Nano 2012, 6, 4045–4053.

    Article  Google Scholar 

  82. Su, J. Z.; Feng, X. J.; Sloppy, J. D.; Guo, L. J.; Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2011, 11, 203–208.

    Article  Google Scholar 

  83. Huang, R.; Zhu, J.; Yu, R. Synthesis and electrical characterization of tungsten oxide nanowires. Chin. Phys. B 2009, 18, 3024–3030.

    Article  Google Scholar 

  84. Hong, K. Q.; Xie, M. H.; Wu, H. S. Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature. Nanotechnology 2006, 17, 4830–4833.

    Google Scholar 

  85. Mukherjee, N.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. Fabrication of nanoporous tungsten oxide by galvanostatic anodization. J. Mater. Res. 2003, 18, 2296–2299.

    Article  Google Scholar 

  86. Gu, Z. J.; Ma, Y.; Yang, W. S.; Zhang, G. J.; Yao, J. N. Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. Chem. Commun. 2005, 41, 3597–3599.

    Article  Google Scholar 

  87. Zhang, X. W.; Zhang, T.; Ng, J. W.; Sun, D. D. High-performance multifunctional TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment. Adv. Funct. Mater. 2009, 19, 3731–3736.

    Article  Google Scholar 

  88. Park, J. H.; Lee, T. W.; Kang, M. G. Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: Use in dye-sensitized solar cells. Chem. Commun. 2008, 44, 2867–2869.

    Article  Google Scholar 

  89. Albu, S. P.; Ghicov, A.; Macak, J. M.; Hahn, R. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. 2007, 7, 1286–1289.

    Article  Google Scholar 

  90. Tsai, T. Y.; Chang, S. J.; Weng, W. Y.; Hsu, C. L.; Wang, S. H.; Chiu, C. J.; Hsueh, T. J.; Chang, S. P. A visible-blind TiO2 nanowire photodetector. J. Electrochem. Soc. 2012, 159, J132–J135.

    Article  Google Scholar 

  91. Mao, Y. B.; Park, T, J.; Wong, S. S. Synthesis of classes of ternary metal oxide nanostructures. Chem. Commun. 2005, 41, 5721–5735.

    Article  Google Scholar 

  92. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

    Article  Google Scholar 

  93. Bie, Y. Q.; Liao, Z. M.; Zhang, H. Z.; Li, G. R.; Ye, Y.; Zhou, Y. B.; Xu, J.; Qin, Z. X.; Dai, L.; Yu, D. P. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 23, 649–653.

    Article  Google Scholar 

  94. Tsai, T. Y.; Chang, S. J.; Hsueh, T. J.; Hsueh, H. T.; Weng, W. Y.; Hsu, C. L.; Dai, B. T. p-Cu2O-shell/n-TiO2-nanowire-core heterostucture photodiodes. Nanoscale Res. Lett. 2011, 6, 575.

    Article  Google Scholar 

  95. Zou, J. P.; Zhang, Q.; Huang, K.; Marzari, N. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. C 2010, 114, 10725–10729.

    Article  Google Scholar 

  96. Liu, B. D.; Bando, Y.; Liu, L. Z.; Zhao, J. J.; Masanori, M.; Jiang, X.; Golberg, D. Solid-solution semiconductor nanowires in pseudobinary systems. Nano Lett. 2013, 13, 85–90.

    Article  Google Scholar 

  97. Li, L.; Lu, H.; Yang, Z. Y.; Tong, L. M.; Bando, Y.; Golberg, D. Bandgap-graded CdSxSe1−x nanowires for high-performance field-effect transistors and solar cells. Adv. Mater. 2013, 25, 1109–1113.

    Article  Google Scholar 

  98. Pan, A. L.; Liu, R. B.; Sun, M. H.; Ning, C. Z. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 2010, 4, 671–680.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Tian or Liang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., Lu, H. & Li, L. Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Res. 8, 382–405 (2015). https://doi.org/10.1007/s12274-014-0661-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0661-2

Keywords

Navigation