Skip to main content
Log in

Realization of low contact resistance close to theoretical limit in graphene transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Realizing low contact resistance between graphene and metal electrodes remains a well-known challenge for building high-performance graphene devices. In this work, we attempt to reduce the contact resistance in graphene transistors and further explore the resistance limit between graphene and metal contacts. The Pd/graphene contact resistance at room temperature is reduced below the 100 Ω·μm level both on mechanically exfoliated and chemical-vapor-deposition graphene by adopting high-purity palladium and high-quality graphene and controlling the fabrication process to not contaminate the interface. After excluding the parasitic series resistances from the measurement system and electrodes, the retrieved contact resistance is shown to be systematically and statistically less than 100 Ω·μm, with a minimum value of 69 Ω·μm, which is very close to the theoretical limit. Furthermore, the contact resistance shows no clear dependence on temperature in the range of 77–300 K; this is attributed to the saturation of carrier injection efficiency between graphene and Pd owing to the high quality of the graphene samples used, which have a sufficiently long carrier mean-free-path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  2. Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Metal/graphene contact as a performance killer of ultra-high mobility graphene-analysis of intrinsic mobility and contact resistance. IEDM 2009, 565–568.

    Google Scholar 

  3. Xia, F. N.; Perebeinos, V.; Lin, Y. M.; Wu, Y. Q.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179–184.

    Article  Google Scholar 

  4. Venugopal, A.; Colombo, L.; Vogel, E. M. Contact resistance in few and multilayer graphene devices. Appl. Phys. Lett. 2010, 96, 013512.

    Article  Google Scholar 

  5. Nouchi, R.; Shiraishi, M.; Suzuki, Y. Transfer characteristics in graphene field-effect transistors with Co contacts. Appl. Phys. Lett. 2008, 93, 152104.

    Article  Google Scholar 

  6. Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Systematic investigation of intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor. Jpn. J. Appl. Phys. 2010, 49, 051304.

    Article  Google Scholar 

  7. Malec, C. E.; Davidović, D. Electronic properties of Au-graphene contacts. Phys. Rev. B 2011, 84, 033407.

    Article  Google Scholar 

  8. Robinson, J. A.; LaBella, M.; Zhu, M.; Hollander, M.; Kasarda, R.; Hughes, Z.; Trumbull, K.; Cavalero, R.; Snyder, D. Contact graphene. Appl. Phys. Lett. 2011, 98, 053103.

    Article  Google Scholar 

  9. Choi, M. S.; Lee, S. H.; Yoo, W. J. Plasma treatments to improve metal contacts in graphene field effect transistor. J. Appl. Phys. 2011, 110, 073305.

    Article  Google Scholar 

  10. Li, W.; Liang, Y. R.; Yu, D. M.; Peng, L. M.; Pernstich, K. P.; Shen, T.; Hight Walker, A. R.; Cheng, G. J.; Hacker, C. A.; Richter, C. A.; Li, Q. L.; Gundlach, D. J.; Liang, X. L. Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Appl. Phys. Lett. 2013, 102, 183110.

    Article  Google Scholar 

  11. Balci, O.; Kocabas, C. Rapid thermal annealing of graphene-metal contact. Appl. Phys. Lett. 2012, 101, 243105.

    Article  Google Scholar 

  12. Smith, J. T.; Franklin, A. D.; Farmer, D. B.; Dimitrakopoulos, C. D. Reducing contact resistance in graphene devices through contact area patterning. ACS Nano 2013, 7, 3661–3667.

    Article  Google Scholar 

  13. Parrish, K. N.; Akinwande, D. Impact of contact resistance on the transconductance and linearity of graphene transistors. Appl. Phys. Lett. 2011, 98, 183505.

    Article  Google Scholar 

  14. Xu, H. T.; Wang, S.; Zhang, Z. Y.; Wang, Z. X.; Xu, H. L.; Peng, L. M. Appl. Phys. Lett. 2012, 100, 103501.

    Article  Google Scholar 

  15. Huard, B.; Stander, N.; Sulpizio, J. A.; Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys. Rev. B 2008, 78, 121402(R).

    Article  Google Scholar 

  16. Guo, Z. L.; Dong, R.; Chakraborty, P. S.; Lourenco, N.; Palmer, J.; Hu, Y. K.; Ruan, M.; Hankinson, J.; Kunc, J.; Cressler, J. D.; Berger, C.; de Heer, W. A. Record maximum oscillation frequency in C-face epitaxial graphene transistors. Nano Lett. 2013, 13, 942.

    Article  Google Scholar 

  17. Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A.; Guo, J.; Kim, P.; Hone, J.; Shepard, K. L.; Dean, C. R. One-dimensional electronic contact to a two-dimensional material. Science 2013, 342, 614–617.

    Article  Google Scholar 

  18. Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nano. 2008, 3, 206–209.

    Article  Google Scholar 

  19. Nouchi, R.; Saito, T.; Tanigaki, K. Observation of negative contact resistance in graphene field-effect transistors. J. Appl. Phys. 2012, 111, 084314.

    Article  Google Scholar 

  20. Knoch, J.; Chen, Z. H.; Appenzeller, J. Properties of metal-graphene contacts. IEEE Trans. Nanotechnol. 2012, 11, 513–519.

    Article  Google Scholar 

  21. Kim, S.; Nah, J.; Jo, I.; Shahrjerdi, D.; Colombo, L.; Yao, Z.; Tutuc, E.; Banerjee, S. K. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 2009, 94, 062107.

    Article  Google Scholar 

  22. Zhang, Z. Y.; Xu, H. L.; Zhong, H.; Peng, L. M. Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements. Appl. Phys. Lett. 2012, 101, 213103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Zhang or Lianmao Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, H., Zhang, Z., Chen, B. et al. Realization of low contact resistance close to theoretical limit in graphene transistors. Nano Res. 8, 1669–1679 (2015). https://doi.org/10.1007/s12274-014-0656-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0656-z

Keywords

Navigation